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Appendix A. Additional tables

Table Al: Ontario — Correlations between the Google mobility indicators

category grocery workplaces transit residential parks N

retail 3,008
grocery 1 3,064
workplaces 0.26 1 3,082
transit 0.47 0.65 1 2,453
residential -0.38 -0.92 -0.69 1 2,751
parks 0.31 0.40 0.40 -0.47 1 1,483

Notes: The time period is May 1 to July 30 (two weeks before the May 15 - August 13 sample period).

Daily PHU-level data.

Table A2: Canada — Correlations between the Google mobility indicators

category grocery workplaces transit residential parks N

retail 1,560
grocery 1 1,560
workplaces 0.53 1 1,560
transit 0.60 0.86 1 1,394
residential -0.58 -0.91 -0.85 1 1,516
parks 0.43 0.19 0.25 -0.46 1 1,347

Notes: The time period is February 26 to July 30 (two weeks before the March 11 - August 13 sample
period). Daily province-level data.
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Table A3: Ontario — Correlations between policies and location behaviour

Behaviour proxy Mask Business/gathering LTC

Behaviour proxy 1

Mask 0.17 1

Business/gathering -0.55 -0.63 1

Long-term care (LTC) -0.27 -0.75 0.66 1

Notes: The time period is May 15 to August 13 (N = 3,094). Each variable is a 7-day moving average. All
variables are at the PHU level, except LTC which is measured at the province level.

Table A4: Canada — Correlations between policies and location behaviour

Behaviour proxy Mask Business/gathering School Travel LTC

Behaviour proxy 1

Mask 0.09 1

Business/gathering -0.86 -0.23 1

School -0.37 0.08 0.37 1

Travel -0.14 -0.09 0.30 0.61 1
Long-term care (LTC) -0.14 -0.11 0.24 0.44 0.22 1

Notes: The time period is March 11 to August 13 (N = 1,560). Province-level, 7-day moving averages.
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Table A6: Ontario — Robustness (standard errors)

Outcome: weekly case growth Alog(AC)

1)

(2)

Mask_14 -0.366 -0.376
(0.014) **  (0.012) **
[0.010] **  [0.008]  ***
{0.022} **  {0.016} **
Business/gathering 14 -0.137 0.279
(0.849) (0.688)
[0.877] [0.689]
{0.887} {0.703}
Long-term care_14 0.747 -0.097
(0.657) (0.951)
[0.677] [0.930]
{0.702} {0.935}
Behaviour proxy_14 -0.018 -0.018
(0.183) (0.197)
[0.266] [0.272]
{0.281} {0.272}
R-squared 0.054 0.060
N 3,094 3,094
Alog(AC)_14 X X
log(AC)_14 X X
Alog(APC)_14 X
log(APC)_14 X
Alog(AT) X X
PHU fixed effects X X
cubic time trend X X

Notes: The time period is May 15 - August 13. P-values from standard clustering by PHU (Stata
command cluster) in the ( ) parentheses, wild bootstrap with one-way clustering by PHU and 5000
repetitions in the [ ] square brackets, and wild bootstrap with two-way clustering by PHU and day with

5000 repetitions in the { } curly braces. PC denotes provincial cases.
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Table A9: Canada — Robustness (standard errors)

Outcome: weekly case growth Alog(AC)

()

(2)

Mask_14 -0.618 -0.613
(0.014) **  (0.014) **
[0.000] *** [0.000] ***
{0.000} *** {0.000} ***
Business/gathering_ 14 -0.835 -0.846
(0.027) **  (0.023) **
[0.031] ** [0.033] **
{0.035} **  {0.039} **
School_14 -0.425 -0.433
(0.042) **  (0.025) **
[0.015] ** [0.019] **
{0.015} **  {0.014} **
Travel 14 -0.375 -0.412
(0.526) (0.534)
[0.613] [0.636]
{0.612} {0.637}
Long-term care_14 0.023 0.032
(0.948) (0.926)
[0.958] [0.920]
{0.958} {0.920}
Behaviour proxy_14 -0.001 0.000
(0.857) (0.962)
[0.880] [0.972]
{0.878} {0.972}
R-squared 0.406 0.410
N 1,560 1,560
Alog(AC)_14 X X
log(AC)_14 X X
Alog(ANC)_14 X
log(ANC)_14 X
Alog(AT) X X
province fixed effects X X
cubic time trend X X

Notes: The time period is March 11 - August 13. P-values from standard clustering by province in the ()
parentheses, wild bootstrap with one-way clustering by province and 5000 repetitions in the [ | square
brackets, and wild bootstrap with two-way clustering by province and day with 5000 repetitions in the { }
curly braces.
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Table A11: Canada — Robustness (news and weather)

Outcome: weekly case growth Alog(AC)
(1) (2) (3) (4) (5) (6)

baseline add weather add news
Mask_14 -0.618 ***  _0.613 *** -0.676 ** -0.666 ** -0.629 *** _0.616 ***
[0.000] [0.000] [0.020] [0.026] [0.000] [0.002]
Business/ -0.835 **  -0.846 **  -0.903 * -0.912* -0.884 **  -0.892 **
gathering_14 [0.031] [0.033] [0.078] [0.070] [0.018] [0.024]
School_14 -0.425 **  -0.433 **  -0.497 * -0.528 *  -0.297 -0.292
[0.015] [0.019] [0.068] [0.085] [0.205] [0.111]
Travel_14 -0.375 -0.412 -0.242 -0.318 -0.302 -0.415
[0.613] [0.636] [0.777] [0.727] [0.687] [0.627]
Long-term care_14  0.023 0.032 0.052 0.063 0.043 0.056
[0.958] [0.920] [0.908] [0.884] [0.900] [0.881]
Behaviour proxy_14 -0.001 0.000 -0.002 -0.001 -0.001 0.002
[0.880] [0.972] [0.868] [0.962] [0.918] [0.814]
Alog(AC)_14 -0.078 * -0.072 -0.083 *  -0.078 -0.071 -0.072
[0.090] [0.198] [0.068] [0.170] [0.118] [0.202]
log(AC)_14 -0.227 **  -0.227 * -0.221 *  -0.224 -0.216 * -0.221
[0.019] [0.090] [0.054] [0.120] [0.090] [0.110]
Alog(ANC)_14 -0.107 -0.136 -0.066
[0.631] [0.470] [0.774]
log(ANC)_14 0.055 0.130 0.338
[0.825] [0.612] [0.332]
Alog(AT) 0.172 ** 0.169 * 0.189 ** 0.187 * 0.161 * 0.158 *
[0.043] [0.056] [0.033] [0.052] [0.064] [0.078]
Rain_14 0.053 0.054
[0.189] [0.177]
Max temp_14 0.037 0.039
[0.434] [0.389]
Min temp_14 -0.031 -0.034
[0.562] [0.519]
News_14 -0.003 -0.007
[0.278] [0.103]
R-squared 0.414 0.414 0.419 0.419 0.415 0.416
N 1,560 1,560 1,560 1,560 1,560 1,560
Province FE X X X X X X
Cubic in days X X X X X X
Weather X X
News X X

Notes: The time period is March 11 to August 13, 2020. P-values from wild bootstrap (cgmwildboot)
standard errors clustered by province with 5000 repetitions are reported in the square brackets. Columns
(1) and (2) repeat columns (3) and (4) from Table 2. Columns (3) and (4) report estimates with lagged
weather variables as additional controls. Columns (5) and (6) add a “news” variable to the baseline
specification (see Appendix C for more details). *** ** and * denote 10%, 5% and 1% significance level
respectively.
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Table A12: Self-reported Mask Usage (“Always” or “Frequently”) — Canada

Outcome: Wear mask “Always” or “Frequently”

(1) (2) (3) (4) (5) (6)
no time trend cubic time trend week fixed effects
Mask 0.371 *¥** (0.354 ***  (.217 *** (.215 *** (.212 *** (.211 ***
[0.000] [0.000] [0.002] [0.006] [0.000] [0.000]
Alog(AC) -0.029 -0.015 -0.017 **  -0.015 * -0.016 ** -0.019 **
[0.503] [0.164] [0.032] [0.086] [0.047] [0.021]
log(AC) -0.037 * 0.028 *** (015 *¥** (0,015 ** (0.016 *** (.016 **
[0.079] [0.004] [0.000] [0.031] [0.002] [0.012]
Alog(ANC) -0.158 ** -0.044 0.185
[0.036] [0.236] [0.132]
log(ANC) -0.148 *¥ 0.025 -0.024
[0.000] [0.582] [0.907]
R-squared 0.132 0.162 0.173 0.173 0.174 0.175
N 8,859 8,859 8,859 8,859 8,859 8,859
mean wo mask mandates 0.464 0.464 0.464 0.464 0.464 0.464
individual characteristics X X X X X X
province fixed effects X X X X X X
cubic time trend (days) X X
week fixed effects X X

Notes: The time period is April 2 to August 13, 2020. P-values from wild bootstrap (cgmwildboot)
standard errors clustered by province with 5000 repetitions are reported in the square brackets. NC
denotes national total cases. The data source is YouGov. The outcome is a dummy which takes one for the
respondent who answers “Always” or “Frequently” to the survey question “Thinking about the last 7 days,
how often have you worn a face mask outside your home?” Sample weights are used. Individual
characteristics include a gender dummy, dummies for each age (in years), dummies for each household size,
dummies for each number of children, and dummies for each employment status. *** ** and * denote
10%, 5% and 1% significance level respectively.
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Table A15: Canada — Closing vs. Re-opening Sub-periods

Outcome: weekly case growth Alog(AC)

Closing;:
March 11 - May 14

(1)

(2)

Re-opening;:
May 15 - August 13

| 3)

(4)

Mask_14 n.a. n.a. -0.788 *  -0.797 *
n.a. n.a. [0.070] [0.056]
Business/gathering 14 -0.045 -0.095 -1.115 **  -1.148 *
[0.914] [0.874] 0.038]  [0.056]
School_14 -0.998 ***  -1.041 *** | 0.005 -0.016
[0.000] [0.000] [1.000]  [0.939]
Travel 14 12433 ¥ 2,623 *** | 0,910 0.929
[0.000] [0.000] 0.351]  [0.376]
Long-term care_14 -0.803 *** -0.906 ** | -0.260 -0.264
[0.006] [0.010] (0.578]  [0.563]
Behaviour proxy_14 -0.036 * -0.034 -0.012 -0.013
[0.087] [0.139] 0.841]  [0.834]
Alog(AC)_14 0.075 0.076 -0.156 -0.157
[0.184] [0.250] 0.105]  [0.136]
log(AC)_14 [0.399 ¥ 0413 %% | 0221  -0.221
[0.000] [0.000] (0.148]  [0.161]
Alog(ANC)_14 -0.120 -0.346
[0.535] [0.709]
log(ANC)_14 0.285 0.494
0.312] [0.657]
Alog(AT) 0.110 0.099 0.233 0.261
[0.256] [0.299] 0.479]  [0.423]
R-squared 0.689 0.689 0.169 0.170
N 650 650 910 910
province fixed effects X X X X
cubic time trend (days) X X X X

Notes: P-values from wild bootstrap (cgmwildboot) standard errors clustered by province with 5000
repetitions are reported in the square brackets. *** ** and * denote 10%, 5% and 1% significance level
respectively. NC denotes national total cases. No mask mandates are present in the closing period.
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Table A16: Canada — Deaths growth (treatment of zero weekly deaths)

(1)

Outcome: weekly deaths growth Alog(AD)

(2)

(3)

(4)

(5)

(6)

baseline 4 largest provinces population weighted
Mask_28 -0.922 **  -0.983 **  0.139 0.009 -0.260  -0.480
[0.022] [0.032] [0.762] [0.762] [0.592]  [0.488]
Business/gathering 28  -0.134 -0.224 -2.067 4k 2277 Fk 1300  -1.442
[0.762] [0.748] [0.000] [0.000] [0.102]  [0.106]
School 28 0.441 0.440 0.599 0.601 0.355 0.371
[0.317] [0.341] [0.381] [0.255] [0.500]  [0.557]
Travel 28 -0.005 -0.027 1.645 2.101 0.906 0.741
[0.972] [0.935] [0.259] [0.244] [0.216]  [0.405]
Long-term care_28 -0.035 -0.036 -0.024 -0.088 -0.053  -0.056
[0.900] [0.900] [0.878] [0.762] [0.896]  [0.808]
Behaviour proxy_28 0.002 0.003 -0.012 -0.001 -0.009 -0.001
[0.815] [0.737] [0.244] [0.861] [0.500]  [0.958]
Alog(AD)_28 0.141 0.152 -0.037 ***  0.006 0.010 0.065
[0.361] [0.345] [0.000] [0.599] [0.818]  [0.344]
log(AD)_28 -0.216 *** -0.220 *** -0.139 -0.164 -0.164 * -0.181
[0.000] [0.000] [0.381] [0.253] [0.056]  [0.100]
Alog(AND)_28 -0.121 -0.197 -0.262 *
[0.476] [0.244] [0.065]
log(AND)_28 0.018 0.203 0.147
[0.858] [0.125] [0.448]
Alog(AT) -0.038 -0.051 0.194 ***  0.125 0.176 0.130
[0.758] [0.735] [0.000] [0.255] [0.050]  [0.124]
R-squared 0.251 0.254 0.474 0.480 0.496 0.507
N 1,470 1,470 588 588 1,470 1,470
Province FE X X X X X X
cubic time trend (days) X X X X X X
population weighted No No Yes Yes No No

Notes: The time period is March 11 to August 13, 2020. P-values from wild bootstrap (cgmwildboot)

standard errors clustered by province with 5000 repetitions are reported in the square brackets. Columns
(1) and (2) repeat columns (3) and (4) from Table 4. Columns (3) and (4) report results from a weighted
least squares regression with the province populations used as weights. Columns (5) and (6) restrict the
sample to only the largest 4 provinces (BC, ON, QC, and AB) with only 5% (29 out of 588) observations
with zero weekly deaths. ***, ** and * denote 10%, 5% and 1% significance level respectively. ND denotes

national total deaths.
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Table A19: Ontario — Policies and information only

Outcome: weekly case growth Alog(AC)

(1) (2) (3) (4) (5) (6)

no time trend cubic time trend week fixed effects
Mask_14 -0.228 * -0.286 **  -0.333 **  -0.341 **  -0.286 **  -0.298 **
[0.050] [0.036] [0.025] [0.025] [0.036] [0.028]
Business/gathering 14  0.041 0.132 0.039 0.512 0.128 0.256
[0.816] [0.710] [0.937] [0.437] [0.824] [0.670]
Long-term care_14 0.467 0.366 0.799 -0.240 -1.022 -2.033 *
[0.570] [0.670] [0.653] [0.856] [0.393] [0.099]
Alog(AC)_14 0.028 0.026 0.027 0.030 0.014 0.014
[0.645] [0.682] [0.676] [0.652] [0.804] [0.825]
log(AC)_14 -0.198 ***  _0.202 *** _0.200 *** -0.207 *** -0.195 *** _(0.198 ***
[0.002] [0.001] [0.001] [0.000] [0.001] [0.001]
Alog(APC)_14 0.391 0.260 0.572 **
[0.170] [0.401] [0.038]
log(APC)_14 -0.045 0.462 0.128
[0.841] [0.168] [0.712]
Alog(AT) -0.363 **  -0.481 **  -0.209 -0.343 -0.194 -0.464
[0.050] [0.028] [0.381] [0.169] [0.564] [0.144]
R-squared 0.046 0.050 0.051 0.058 0.091 0.094
N 3,094 3,094 3,094 3,094 3,094 3,094
public health unit FE =~ X X X X X X
cubic time trend (days) X X
week fixed effects X X

Notes: The time period is May 15 to August 13, 2020. P-values from wild bootstrap (cgmwildboot)
standard errors clustered by public health unit (PHU) with 5000 repetitions are reported in the square
brackets. *** ** and * denote 10%, 5% and 1% significance level respectively.

93

CDC_TMO 000162



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 19 of 93 PagelD 415

Table A20: Canada — Policy and Information only

Outcome: weekly case growth, Alog(AC)

(1) (2) (3) (4) (5) (6)

no time trend cubic time trend week fixed effects
Mask_14 -0.413 ***  _0.416 *** -0.629 *** _0.618 *** _0.567 *** _0.561 ***
[0.000] [0.000] [0.000] [0.002] [0.000] [0.004]
Business -0.288 -0.425 -0.665 -0.716 **  -0.500 -0.579
/gathering_14 [0.112] [0.165)] [0.103] [0.032] [0.138] [0.112
School_14 -0.244 -0.381 -0.431 -0.443 * -0.250 -0.353
[0.461] [0.334] [0.144] [0.066] [0.258] [0.137]
Travel 14 -0.509 -0.794 -0.293 -0.368 -0.430 -0.592
[0.270] [0.106] [0.579] [0.580] [0.612] [0.481]
Long-term care_14 -0.100 -0.193 0.027 0.037 0.081 0.064
[0.67] [0.494] [0.917] [0.904] [0.805] [0.849]
Alog(AC)_14 -0.024 -0.010 -0.040 -0.026 -0.017 -0.015
[0.56] [0.824] [0.385] [0.555] [0.772] [0.797]
log(AC)_14 ~0.182 *** 0,208 *** 0,107 **¥* 0200 ** -0.201 *  -0.214 *
[0.000] [0.000] [0.000] [0.01] [0.064] [0.067]
Alog(ANC)_14 -0.073 -0.221 -0.106
[0.636] [0.291] [0.581]
log(ANC)_14 0.121 0.012 0.281 *
[0.359] [0.938] [0.090]
Alog(AT) 0.139 0.187 * 0.185 * 0.176 * 0.155 0.162 *
[0.107] [0.052] [0.069] [0.080] [0.131] [0.100]
R-squared 0.382 0.386 0.391 0.393 0.414 0.416
N 1,560 1,560 1,560 1,560 1,560 1,560
province fixed effects X X X X X X
cubic time trend (days) X X
week fixed effects X X

Notes: The time period is March 11 to August 13, 2020. P-values from wild bootstrap (cgmwildboot)
standard errors clustered by province with 5000 repetitions are reported in the square brackets. *** **
and * denote 10%, 5% and 1% significance level respectively.
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Appendix B. Additional Figures

Figure B1: Self-reported mask usage in selected countries and Canadian provinces
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Notes: The data source is YouGov. The outcome equals 1 if the respondent answered ” Always” to the
question ” Worn a face mask outside your home” and 0 otherwise. The sample weights are used to

construct the country and provincial averages.

©c o o o o o o o
N W O N ©

fraction always wearing mask (weekly average)
g

Figure B2: Canada - mask mandates and self-reported mask usage
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Notes: The data source is YouGov. The figure plots the average self-reported mask usage by week (the
fraction of respondents who answered ” Always” to the survey question ”Worn a face mask outside your
home”) in the provinces with vs. without mask mandates. Sample weights used to compute the averages.
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Figure B3: Canada - Behaviour proxy, B
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Notes: The Behaviour proxy B is the average of the “retail”, “grocery and pharmacy”, and “workplaces”
Google mobility indicators. Province-level 7-day moving averages are plotted.
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Figure B4: Ontario - different initial dates
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Notes: We plot the coefficient estimates on mask policy, with 95% confidence intervals, from equation (1),
for different initial dates of the sample. The initial sample date in the baseline specifications reported in
Table 1 is May 15. The left panel corresponds to baseline column (3) in Table 1, the right column
corresponds to column (4) in Table 1.

Figure B5: Canada - different initial dates
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Figure B6: Ontario - different lags
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Notes: We plot the coefficient estimates on mask policy, with 95% confidence intervals, in equation (1) for

different lag values. The lag used in the baseline specifications in Table 1 is 14 days. The left panel

corresponds to column (3) in Table 1, the right column corresponds to column (4) in Table 1.

Figure B7: Canada - different lags

Baseline specification, Table 2 (3) Baseline specification, Table 2 (4)

o 1 0 o] o L1 1 ]
= 0 < 0
8 8
2 2
© -0.5 © -0.5
Q e
© ©
= E
g 1f g -1f
X X
[2] [2]
@© ©
= =

W e T e e & T e ¥ e e &
_ lag length _ lag length
(@] (@]
°\L; Baseline specification, Table 2 (3) °\L; Baseline specification, Table 2 (4)
(o2} [ I [ | | [ | (o2} [ | | [ [ I |
° 01— 7= - ° 07T T T = -
C C
@© H - e © - -
L ic
© - ©
£ 0.5 £ 0.5
3 . 3

1 2 | |

gy ER
- B
157 1 = 151
D (=]
(%] = 17,) e
0 2 . . . . . . . (R . . . . . . .
g = 8 & F & & & § & & & ¥ E 8 b
a lag length a lag length

Notes: We plot the estimates on mask policy in the upper panel and the business/gathering policy in the
lower panel, in equation (1) for different lag values. The lag in our baseline specification (Table 2) is 14
days. The left panels correspond to column (3) in Table 2; the right panels correspond to column (4) in
Table 2.

o8

CDC_TMO 000167



o
q
A +480-€l - 80-€l 480-€l
2 180-90 180-90 2832y 180-90
1
5 1 10708 1 s0-0¢ i 1 10708
1
S = - 10€2 - 10€2 ' - 10€2
Y— = Z 0O
S S {2091 17091 288635 {2091
< = 1 1
w = - 20-60 -{ 20-60 L - 20-60
g Z 2020 {2020 L 2020
o N~
n 4 90-62 - 90-62 4 90-62
— A7
N k3 -4 90-81 - 90-81 -4 90-81
N~ ~
m m 490-11 —90-11 K 49011
— n 4900 - 90-70 4900
Fo] = o o
)
<@ 5 15082 - 5082 S 450-82
LL o] C c
o 460-1g @ 450-1z © 450-1g
I o) 5 5
™ 2 450Vl @ 450vL @ 4501
g S g g
o s 450-20 -450-20 450-20
m g 4 ¥0-0¢ - v0-0¢ 4 ¥0-0¢
g &
8 _ = ¥0-€Z + ¥0-€2 - v0-€2
N © - 0-91 - v0-91 4 0-91
o]
_Mn._ m 4060 4 %060 44060
> @ 4 ¥0-20 - ¥0-20 4 $0-20
X o0
X R €092 - €0-92 4 €092
(9p]
o - €0-61 - €0-61 = - €0-61
s & {021 0zl 021
5 - €050 - €050 ST He050
- e
ol 4 20-1¢ _ _ _ -1 20-1¢ _ _ L > _ 4 20-1¢
% (OV)ulv ‘sesed ul yummolb Apjeam (@v)ulv ‘syiesp ul ymolb Apjeam (LY)Uv ‘sysay ul ymmoub Apjaam
®
O

CDC_TMO 000168

week ending
59



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 25 of 93 PagelD 421
Figure B9: Canada — Weekly cases, deaths and tests (level)
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Figure B10: Canada — Daily cases, deaths and tests

e,

N=Sl\e v o

N

v
‘l"\\,“’ \'
1 A%

1

4

FARASa
4

N

[

~—

(e[eos boj) seseo Ajiep

date

NS
MB

- === AB

BC
-===0ON

NL

QC -=-=--=-NB

PE

SK

N

o

o
o o
—

(ereos 60oj) syieap Ajiep

date

TN

T VI 1V 11 VW 1w B

El

©
o

~—

< N
o o

~— ~—

(ereos 6oj) sysa1 Ajiep

date

61

CDC_TMO 000170



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 27 of 93 PagelD 423

Figure B11: Counterfactuals — Mask mandates in Alberta and British Columbia
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Notes: The figure assumes mask adoption on July 15 for two provinces that have not yet adopted mask
mandates, specifically British Columbia (BC, left panel) and Alberta (AB, right panel). The counterfactual
uses the mask mandate estimate -0.613 from Table 2, column (4).

Figure B12: Canada - mask mandates and weekly deaths growth
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Appendix C. Definitions and data sources

Table C1: Policy indicators and aggregates

restrictions - international
restrictions - inter-provincial
self-isolation - international

self-isolation - inter-provincial

Non-Essential Travel

1: travelers that are neither citizens nor residents
0.5: same as 1, but US citizens allowed
1: residents of all other provinces
0.5: residents of some other provinces
1: required (by provincial or federal government)
0.5: recommended (by provincial or federal government)
1: required of residents of all other provinces
0.5: required of residents of some other provinces,
or recommended

Primary and Secondary Schools

schools closed

1: no classes (includes Spring and Summer breaks)
0.5: part-time classes; 0: classes in session

Business and Gathering Regulations

non-essential and retail business
personal services business
restaurants

bars and nightclubs

places of worship

events and gatherings
recreation, gyms and parks

indoor gatherings maximum

0: no or lowest restrictions; 1: strictest restrictions;
values between 0 and 1: partial restrictions

1: no gathering allowed; z € [0.5, 1]: limit of 100(1 — z)
x € [0,0.5]: limit of 25/z

Long-Term Care (LTC) Regulations

visiting restrictions

single-site work requirement’

1: no visits (with limited exceptions such as end of life)

0.5: number of visitors restricted

1: requirement in effect

0.5: requirement with explicit later implementation deadline

indoor public places?

Mandatory Masks

1: mask mandate in effect; 0: no mandate

provincial declaration of emergency 1: in effect; 0: not in effect

Notes: 1. We do not consider recommendations or requirements limited to outbreak facilities. 2. We do
not consider limited mask mandates such as applying only to transit or personal service establishments.

63

CDC_TMO 000172



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 29 of 93 PagelD 425

Table C2: Ontario public health regions and date of mask mandate

1 Algoma Public Health Unit July 17, 2020

2 Brant County Health Unit July 20, 2020

3  Chatham-Kent Health Unit August 14, 2020
4 Durham Region Health Department July 10, 2020

5 Eastern Ontario Health Unit July 07, 2020

6  Grey Bruce Health Unit July 17, 2020

7  Haldimand-Norfolk Health Unit August 01, 2020
8  Haliburton, Kawartha, Pine Ridge District Health Unit July 13, 2020

9 Halton Region Health Department July 22, 2020
10 Hamilton Public Health Services July 20, 2020

11 Hastings and Prince Edward Counties Health Unit July 10, 2020
12 Huron Perth District Health Unit July 17, 2020
13 Kingston, Frontenac and Lennox & Addington Public Health June 27, 2020
14 Lambton Public Health July 31, 2020*
15 Leeds, Grenville and Lanark District Health Unit July 07, 2020
16 Middlesex-London Health Unit July 18, 2020
17 Niagara Region Public Health Department July 31, 2020
18 North Bay Parry Sound District Health Unit July 24, 2020
19 Northwestern Health Unit August 17, 2020
20 Ottawa Public Health July 07, 2020
21 Peel Public Health July 10, 2020
22 Peterborough Public Health August 01, 2020
23 Porcupine Health Unit July 23, 2020
24 Region of Waterloo, Public Health July 13, 2020
25 Renfrew County and District Health Unit July 14, 2020
26 Simcoe Muskoka District Health Unit July 13, 2020
27 Southwestern Public Health July 31, 2020
28 Sudbury & District Health Unit July 17, 2020
29 Thunder Bay District Health Unit July 24, 2020
30 Timiskaming Health Unit July 24, 2020
31 Toronto Public Health July 07, 2020
32  Wellington-Dufferin-Guelph Public Health June 12, 2020
33 Windsor-Essex County Health Unit June 26, 2020
34 York Region Public Health Services July 17, 2020

*Lambton Public Health did not enact a mask mandate as of the end of August 2020. However, the City of
Sarnia, which has 58 % of Lambton’s population according to the 2016 Census, enacted a mask mandate
on July 31, 2020. The mask variable for Lambton is coded as 0.5 from July 31, 2020 onward.
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Table C3: Canada COVID-19 official data sources

Province Cases Deaths Tests
Alberta (AB) link  link link
British Columbia (BC) link  link link
Ontario (ON) link  link link
Quebec (QC) link  link link
Saskatchewan (SK) link!  link link
Nova Scotia (NS) link  link link
Manitoba (MB) link  link link?
Newfoundland and Labrador (NL) link! link link
New Brunswick (NB) link  link link
Prince Edward Island (PE) link  link link

Notes: 1. Saskatchewan and Newfoundland and Labrador do not revise their posted data series. We made
data adjustments based on subsequent revisions announced in government bulletins; 2. The Manitoba tests
numbers were manually collected from the COVID-19 provincial government bulletins.

Weather — we downloaded historical weather data for the largest city in each province
from the Weather Canada website. The data provide daily information on 11 variables: max-
imum temperature (C), minimum temperature (C), mean temperature (C), heating degree-
days, cooling degree-days, total rain (mm), total snow (cm), total precipitation (mm), snow
on the ground (cm), direction of maximum wind gust (tens of degrees), and speed of maxi-
mum wind gust (km/h). We only use the temperature and precipitation data in Table A11

as possible factors determining outside vs. inside activity.

News — we collected data from Proquest Canadian Newsstream, a subscription service to
all major and small-market daily or weekly Canadian news sources. We recorded the number
of search results for each day from Feb 1, 2020 to Aug 20, 2020 by searching the database
for the keywords “Coronavirus” or “COVID-19”. We only counted the results with source
listed as “newspaper” since other sources, such as blogs or podcasts, tend to duplicate the

same original content.

65

CDC_TMO 000174



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 31 of 93 PagelD 427

Table C4: YouGov Survey Questions

Survey item Question

i12_health_2 Washed hands with soap and water

i12_health_3 Used hand sanitiser

i12_health_6 Avoided going out in general

i12_health_12 Avoided small social gatherings (not more than 2 people)
i12_health_13 Avoided medium-sized social gatherings (between 3 and 10 people)
i12_health_14 Avoided large-sized social gatherings (more than 10 people)
i12_health_15 Avoided crowded areas

i12_health_20 Avoided touching objects in public (e.g. elevator buttons or doors)

Notes: the data source is YouGov. Possible responses to each survey item are ” Always”, ” Frequently”,
”Sometimes”, ”Rarely”, and ”Not at all”. For Table A13, we create a binary variable taking value 1 if the
response is ” Always” and 0 otherwise. For Table A14, we create a binary variable taking value of 1 if the
respondent answered either ” Always” or ”Frequently” and 0 otherwise.

All data used in the paper are available at https://github.com/C19-SFU-Econ/data.

Appendix D. Lags Determination

As discussed in Section 3.1, we assume a lag of 14 days between a change in policy or
behaviour and its hypothesized effect on weekly case growth, and a lag of 28 days between
such a change and its effect on weekly death growth.

First, we consider the lag between infection and a case being reported. As most identified
cases of COVID-19 in Canada are symptomatic, we focus on symptomatic individuals. For
most provinces cases are listed according to the date of report to public health. In provinces
where the dates instead refer to the public announcement, we shifted them back by one day,
as announcements typically contain the cases reported to public health on the previous day.

The relevant lag therefore has two components:

1. Incubation period: Most studies suggest an average incubation period of 5-6 days (e.g.
5.2 days in Li et al. (2020), 5.5 days in Lauer et al. (2020), 5.6 days in Linton et al.
(2020), 6.4 days in Backer et al. (2020)).

2. Time between symptoms onset and reporting of the case to public health: the Ontario
data contain an estimate of the symptom onset date (”episode date”) for each case. For
our sample period the average difference between the date of report and the episode

date is 4.8 days (median: 4 days) including only values from 1 to 14 days, and 6.3
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days (median: 5 days) including only values from 2 to 28 days. We assume that the
lags in Ontario and in other provinces are similar, and use a value of 5-6 days between

symptom onset and report to public health authorities.

Adding these together implies that the typical lag between infection and a positive case
being reported to public health is around 11 days.

Second, we consider the effect of weekly averaging on the appropriate lag for our analysis.
Suppose a policy or behavioural change starts on date ¢, impacting the daily growth in
infections between dates ¢ — 1 and ¢ and in each subsequent day. Then, assuming a lag of 11
days between infection and case reporting, case counts C' are affected from date t+11 onward.
Our outcome variable A log(AC) thus would react to the original policy or behavioral change
on date ¢t + 11. The change is complete on ¢t 4+ 23, when the week from t + 17 to ¢t 4 23 is
compared to the week from ¢ + 10 to ¢ + 16. The midpoint of the change is t + 17.

Choosing a lag of [ days implies that the policy /behaviour variable phases in from ¢ + [
to t + 1+ 6. To match the midpoint of this phase-in to the midpoint of the change in the
outcome variable, we set [ = 14. The chosen lag matches the lag used by other authors who
study COVID-19 policy interventions, e.g., CKS (2020). We explore sensitivity to alternative
lags in Section 4.3.

With respect to deaths, our data are, in most cases, backdated (revised by the authorities
ex-post) to the actual date of death. The medical literature suggests that the mean time
from symptom onset to death is around 19 days (20 days in Wu et al. (2020), 17.8 days in
Verity et al. (2020), 20.2 days when accounting for right truncation in Linton et al. (2020),
16.1 days in Sanche et al. (2020), etc.), that is, two weeks longer than our estimate of the
time from symptom onset to reporting of a positive test result. We correspondingly set the

lag used in our analysis of the death growth rate (Section 4.5) to 28 days.
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CAUSAL IMPACT OF MASKS, POLICIES, BEHAVIOR ON EARLY
COVID-19 PANDEMIC IN THE U.S.

VICTOR CHERNOZHUKOV, HIROYUKI KASAHARA, AND PAUL SCHRIMPF

ABSTRACT. This paper evaluates the dynamic impact of various policies adopted by US
states on the growth rates of confirmed Covid-19 cases and deaths as well as social dis-
tancing behavior measured by Google Mobility Reports, where we take into consideration
people’s voluntarily behavioral response to new information of transmission risks. Our
analysis finds that both policies and information on transmission risks are important de-
terminants of Covid-19 cases and deaths and shows that a change in policies explains a
large fraction of observed changes in social distancing behavior. Our counterfactual ex-
periments suggest that nationally mandating face masks for employees on April 1st could
have reduced the growth rate of cases and deaths by more than 10 percentage points in
late April, and could have led to as much as 17 to 55 percent less deaths nationally by the
end of May, which roughly translates into 17 to 55 thousand saved lives. Our estimates
imply that removing non-essential business closures (while maintaining school closures,
restrictions on movie theaters and restaurants) could have led to -20 to 60 percent more
cases and deaths by the end of May. We also find that, without stay-at-home orders, cases
would have been larger by 25 to 170 percent, which implies that 0.5 to 3.4 million more
Americans could have been infected if stay-at-home orders had not been implemented. Fi-
nally, not having implemented any policies could have led to at least a 7 fold increase with
an uninformative upper bound in cases (and deaths) by the end of May in the US, with
considerable uncertainty over the effects of school closures, which had little cross-sectional
variation.

1. INTRODUCTION

Accumulating evidence suggests that various policies in the US have reduced social in-
teractions and slowed down the growth of Covid-19 infections." An important outstanding
issue, however, is how much of the observed slow down in the spread is attributable to the
effect of policies as opposed to a voluntarily change in people’s behavior out of fear of being
infected. This question is critical for evaluating the effectiveness of restrictive policies in
the US relative to an alternative policy of just providing recommendations and information

Date: July 1, 2020; First public version posted to ArXiv: May 28, 2020.

Key words and phrases. Covid-19, causal impact, masks, non-essential business, policies, behavior.

We are grateful to Daron Acemoglu, V.V. Chari, Raj Chetty, Christian Hansen, Glenn Ellison, Ivan
Fernandez-Val, David Green, Ido Rosen, Konstantin Sonin, James Stock, and Ivan Werning for helpful
comments. We also thank Chiyoung Ahn, Joshua Catalano, Jason Chau, Samuel Gyetvay, Sev Chenyu Hou,
Jordan Hutchings, and Dongxiao Zhang for excellent research assistance. All mistakes are our own.

1See Courtemanche et al. (2020), Hsiang et al. (2020), Pei, Kandula, and Shaman (2020), Abouk and
Heydari (2020), and Wright et al. (2020).
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such as the one adopted by Sweden. More generally, understanding people’s dynamic be-
havioral response to policies and information is indispensable for properly evaluating the
effect of policies on the spread of Covid-19.

This paper quantitatively assesses the impact of various policies adopted by US states on
the spread of Covid-19, such as non-essential business closure and mandatory face masks,
paying particular attention to how people adjust their behavior in response to policies as
well as new information on cases and deaths.

We present a conceptual framework that spells out the causal structure on how the
Covid-19 spread is dynamically determined by policies and human behavior. Our approach
explicitly recognizes that policies not only directly affect the spread of Covid-19 (e.g., mask
requirement) but also indirectly affect its spread by changing people’s behavior (e.g., stay-
at-home order). It also recognizes that people react to new information on Covid-19 cases
and deaths, and voluntarily adjust their behavior (e.g., voluntary social distancing and
hand washing) even without any policy in place. Our casual model provides a framework to
quantitatively decompose the growth of Covid-19 cases and deaths into three components:
(1) direct policy effect, (2) policy effect through behavior, and (3) direct behavior effect in
response to new information.?

Guided by the causal model, our empirical analysis examines how the weekly growth
rates of confirmed Covid-19 cases and deaths are determined by (the lags of) policies and
behavior using US state-level data. To examine how policies and information affect people’s
behavior, we also regress social distancing measures on policy and information variables.
Our regression specification for case and death growths is explicitly guided by a SIR model
although our causal approach does not hinge on the validity of a SIR model.

As policy variables, we consider mandatory face masks for employees in public businesses,
stay-at-home orders (or shelter-in-place orders), closure of K-12 schools, closure of restau-
rants except take out, closure of movie theaters, and closure of non-essential businesses.
Our behavior variables are four mobility measures that capture the intensity of visits to
“transit,” “grocery,” “retail,” and “workplaces” from Google Mobility Reports. We take
the lagged growth rate of cases and deaths and the log of lagged cases and deaths at both
state-level and national-level as our measures of information on infection risks that affects
people’s behavior. We also consider the growth rate of tests, month dummies, and state-
level characteristics (e.g., population size and total area) as confounders that have to be
controlled for in order to identify the causal relationship between policy /behavior and the
growth rate of cases and deaths.

Our key findings from regression analysis are as follows. We find that both policies
and information on past cases and deaths are important determinants of people’s social

2The causal model is framed using the language of structural equations models and causal diagrams
of econometrics (Wright (1928); Haavelmo (1944); Heckman and Vytlacil (2007); see Greenland, Pearl,
and Robins (1999), Peters, Janzing, and Bernhard (2017), and Herndn and Robins (2020) for modern
developments, especially in computer science and epidemiology), with natural unfolding potential outcomes
representation (Rubin, 1974; Tinbergen, 1930; Neyman, 1925; Imbens and Rubin, 2015). As such it naturally
converses in all languages for causal inference.
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distancing behavior, where policy effects explain more than 50% of the observed decline in
the four behavior variables.? Our estimates suggest that there are both large policy effects
and large behavioral effects on the growth of cases and deaths. Except for mandatory masks,
the effect of policies on cases and deaths is indirectly materialized through their impact on
behavior; the effect of mandatory mask policy is direct without affecting behavior.

Using the estimated model, we evaluate the dynamic impact of the following counterfac-
tual policies on Covid-19 cases and deaths: mandating face masks, allowing non-essential
businesses to open, not implementing a stay-at-home order, and removing all policies. The
counterfactual experiments show a large impact of those policies on the number of cases and
deaths. They also highlight the importance of voluntary behavioral response to infection
risks for evaluating the dynamic policy effects.

Figure 1 shows that nationally implementing mandatory face masks for employees in
public businesses on April 1st would have reduced the growth rate of cases (top panel) and
that of deaths (bottom panel) by more than 10 percentage points in late April. This leads
to reductions of 25% and 35% in reported cases and deaths, respectively, by the end of
May with a 90 percent confidence interval of [10,45]% and [17, 55]%, which roughly implies
that as many as 17 to 55 thousand lives could have been saved.* This finding is significant:
given this potentially large benefit of reducing the spread of Covid-19, mandating masks
is an attractive policy instrument especially because it involves relatively little economic
disruption. These estimates contribute to the ongoing efforts towards designing approaches
to minimize risks from reopening (Stock, 2020a).

Figure 2 illustrates how allowing non-essential businesses to remain open could have
affected the growth of cases. We estimate that non-essential business closures have a small
impact on growth rates, with a 90% confidence interval that includes both negative and
positive effects. When this effect on growth rates is converted to a change in levels, the point
estimates indicate that keeping non-essential businesses open (other than movie theaters,
gyms, and keeping restaurants in the “take-out” mode) could have increased cases and
deaths by 15% (with a 90 percent confidence interval of —20% to 60%). These estimates
contribute to the ongoing efforts of evaluating various reopening approaches.

In Figure 3, we find that, without stay-at-home orders, the case growth rate would have
been nearly 10 percentage points higher in late April. No stay-at-home orders could have
led to 80% more cases by the start of June with a 90 precent confidence interval given by
25% to 170%. This implies that 0.5 to 3.4 million more Americans would have been infected
without stay-at-home orders, providing suggestive evidence that reopening via removal of
stay-at-home orders could lead to a substantial increase in cases and deaths.

3The behavior accounts for the other half. This is in line with theoretical study by Gitmez, Sonin,
and Wright (2020) that investigates the role of private behavior and negative external effects for individual
decisions over policy compliance as well as information acquisition during pandemics.

4As of May 27, 2020, the US Centers for Disease Control and Prevention reports 99,031 deaths in the
US.
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In our counterfactual experiment of removing all policies, we find that the results are
sensitive to whether the number of past national cases/deaths is included in a specification
or not. This sensitivity arises because there is little variation across states in the timing of
school closures. This makes the effect of school closures difficult to identify. In Figure 15,
we show that in a specification that excludes past national cases (which allow for greater
attribution of effects to school closures), the number of cases by the end of May could have
increased 7-fold or more with a very large upper bound. On the other hand, as shown in
Figure 16, under a specification with past national cases, our counterfactual experiment
implies a 0 to 10 fold increase in cases by the end of May. This highlights the uncertainty
regarding the impact of all policies versus private behavioral responses to information.
Evaluation of re-opening policies needs to be aware of this uncertainty.

FIGURE 1. Effect of nationally mandating masks for employees on April 1st
in the US
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FIGURE 2. Effect of leaving non-essential businesses open on cases in the US
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FIGURE 3. Effect of not implementing stay-at-home order on cases in the US
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A growing number of other papers have examined the link between non-pharmaceutical
interventions and Covid-19 cases.® Hsiang et al. (2020) estimate the effect of policies on
the growth rate of cases using data from the United States, China, Iran, Italy, France, and
South Korea. In the United States, they find that the combined effect of all policies they
consider on the growth rate is —0.347 (0.061). Courtemanche et al. (2020) use US county
level data to analyze the effect of interventions on case growth rates. They find that the
combination of policies they study reduced growth rates by 9.1 percentage points 16-20
days after implementation, out of which 5.9 percentage points are attributed to shelter
in place orders. Both Hsiang et al. (2020) and Courtemanche et al. (2020) adopted a
reduced-form approach to estimate the total policy effect on case growth without using any
social distancing behavior measures. In contrast, our study highlights the role of behavioral
response to policies and information.

5We refer the reader to Avery et al. (2020) for a comprehensive review of a larger body of work researching
Covid-19; here we focus on few quintessential comparisons on our work with other works that we are aware
of.
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Existing evidence for the impact of social distancing policies on behavior in the US is
mixed. Abouk and Heydari (2020) employ a difference-in-differences methodology to find
that statewide stay-at-home orders have strong causal impacts on reducing social interac-
tions. In contrast, using data from Google Mobility Reports, Maloney and Taskin (2020)
find that the increase in social distancing is largely voluntary and driven by information.®
Another study by Gupta et al. (2020) also found little evidence that stay-at-home mandates
induced distancing by using mobility measures from PlacelQ and SafeGraph. Using data
from SafeGraph, Andersen (2020) show that there has been substantial voluntary social
distancing but also provide evidence that mandatory measures such as stay-at-home orders
have been effective at reducing the frequency of visits outside of one’s home.

Pei, Kandula, and Shaman (2020) use county-level observations of reported infections
and deaths in conjunction with mobility data from SafeGraph to estimate how effective
reproductive numbers in major metropolitan areas change over time. They conduct simu-
lation of implementing all policies 1-2 weeks earlier and found that it would have resulted
in reducing the number of cases and deaths by more than half. However, their study does
not explicitly analyze how policies are related to the effective reproduction numbers.

Epidemiologists use model simulations to predict how cases and deaths evolve for the
purpose of policy recommendation. As reviewed by Avery et al. (2020), there exist sub-
stantial uncertainty about the values of key epidimiological parameters (see also Atkeson,
2020a; Stock, 2020b). Simulations are often done under strong assumptions about the im-
pact of social distancing policies without connecting to the relevant data (e.g., Ferguson
et al., 2020). Furthermore, simulated models do not take into account that people may
limit their contact with other people in response to higher transmission risks.” When such
a voluntary behavioral response is ignored, simulations would produce exponential spread of
disease and would over-predict cases and deaths. Our counterfactual experiments illustrate
the importance of this voluntary behavioral change.

Whether wearing masks in public place should be mandatory or not has been one of the
most contested policy issues with health authorities of different countries providing con-
tradiction recommendations. Reviewing evidence, Greenhalgh et al. (2020) recognize that
there is no randomized controlled trial evidence for the effectiveness of face masks, but they
state “indirect evidence exists to support the argument for the public wearing masks in the
Covid-19 pandemic.”® Howard et al. (2020) also review available medical evidence and con-
clude that “mask wearing reduces the transmissibility per contact by reducing transmission
of infected droplets in both laboratory and clinical contexts” The laboratory findings in
Hou et al. (2020) suggest that the nasal cavity may be the initial site of infection followed

GSpeciﬁcally, they find that of the 60 percentage point drop in workplace intensity, 40 percentage points
can be explained by changes in information as proxied by case numbers, while roughly 8 percentage points
can be explained by policy changes.

"See Atkeson (2020b) and Stock (2020b) for the implications of the SIR model for Covid-19 in the US.
Fernandez-Villaverde and Jones (2020) estimate a SIRD model in which time-varying reproduction numbers
depend on the daily deaths to capture feedback from daily deaths to future behavior and infections.

8The virus remains viable in the air for several hours, for which surgical masks may be effective. Also, a
substantial fraction of individual who are infected become infectious before showing symptom onset.
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by aspiration to the lung, supporting the argument “for the widespread use of masks to
prevent aersol, large droplet, and /or mechanical exposure to the nasal passages.”

Given the lack of experimental evidence on the effect of masks, conducting observational
studies is useful and important. To the best of our knowledge, our paper is the first empirical
study that shows the effectiveness of mask mandates on reducing the spread of Covid-19 by
analyzing the US state-level data. This finding corroborates and is complementary to the
medical observational evidence in Howard et al. (2020). Analyzing mitigation measures in
New York, Wuhan, and Italy, Zhang et al. (2020b) conclude that mandatory face coverings
substantially reduced infections. Abaluck et al. (2020) find that the growth rates of cases
and of deaths in countries with pre-existing norms that sick people should wear masks are
lower by 8 to 10% than those rates in countries with no pre-existing mask norms.

Our empirical results contribute to informing the economic-epidemiological models that
combine economic models with variants of SIR models to evaluate the efficiency of various
economic policies aimed at gradual “reopening” of various sectors of economy. For example,
the estimated effects of masks, stay-home mandates, and various other policies on behav-
ior, and of behavior on infection can serve as useful inputs and validation checks in the
calibrated macro, sectoral, and micro models (see, e.g., Alvarez, Argente, and Lippi (2020);
Baqaee et al. (2020); Fernandez-Villaverde and Jones (2020); Acemoglu et al. (2020); Keppo
et al. (2020); McAdams (2020) and references therein.) Furthermore, the causal framework
developed in this paper could be applicable, with appropriate extensions, to the impact of
policies on economic outcomes replacing health outcomes (see, e.g., Chetty et al. (2020);
Coibion, Gorodnichenko, and Weber (2020)).

2. THE CAUSAL MODEL FOR THE EFFECT OF POLICIES, BEHAVIOR, AND INFORMATION
ON GROWTH OF INFECTION

2.1. The Causal Model and Its Structural Equation Form. We introduce our ap-
proach through the Wright-style causal diagram shown in Figure 4. The diagram describes
how policies, behavior, and information interact together:

e The forward health outcome, Y; ;1 ¢, is determined last, after all other variables have
been determined;

e The adopted policies, F;, affect health outcome Y;;, either directly, or indirectly
by altering human behavior Bj;

e Information variables, I;;, such as lagged values of outcomes can affect human be-
havior and policies, as well as outcomes;

e The confounding factors W, which vary across states and time, affect all other
variables.

The index ¢ denotes observational unit, the state, and ¢ and ¢ + ¢ denotes the time, where
¢ represents the time lag between infection and case confirmation or death.
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FIGURE 4. S. & P. Wright type causal path diagram for our model.

Our main outcomes of interest are the growth rates in Covid-19 cases and deaths, be-
havioral variables include proportion of time spent in transit or shopping and others, policy
variables include stay-at-home orders and school and business closures, and the informa-
tion variables include lagged values of outcome. We provide a detailed description of these
variables and their timing in the next section.

The causal structure allows for the effect of the policy to be either direct or indirect —
through-behavior or through dynamics; and all of these effects are not mutually exclusive.
The structure also allows for changes in behavior to be brought by change in policies and in-
formation. These are all realistic properties that we expect from the contextual knowledge
of the problem. Policies such as closures of schools, non-essential business, and restau-
rants, alter and constrain behavior in strong ways. In contrast, policies such as mandating
employees to wear masks can potentially affect the Covid-19 transmission directly. The
information variables, such as recent growth in the number of cases, can cause people to
spend more time at home, regardless of adopted state policies; these changes in behavior in
turn affect the transmission of Covid-19.

The causal ordering induced by this directed acyclical graph is determined by the follow-
ing timing sequence:

¢l
(2
3
(

information and confounders get determined at ¢,
policies are set in place, given information and confounders at t;
behavior is realized, given policies, information, and confounders at ¢;

4) outcomes get realized at t+/ given policies, behavior, information, and confounders.

— — N

The model also allows for direct dynamic effects of information variables on the outcome
through autoregressive structures that capture persistence in growth patterns. As high-
lighted below, realized outcomes may become new information for future periods, inducing
dynamics over multiple periods.
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Our quantitative model for causal structure in Figure 4 is given by the following econo-
metric structural equation model:

Yigre(bp,0) =a'b+a'p+p'v+ 0y Wi + €}, (SEM)

Biy(p, ) =B’ + 71+ Wiy + &by,

which is a collection of functional relations with stochastic shocks, decomposed into observ-
able part 0'W and unobservable part e. The terms e}, and 5% are the centered stochastic
shocks that obey the orthogonality restrictions posed below.

The policies can be modeled via a linear form as well,
Pi(t) =1t + 0p Wi + €, (P)

although linearity is not critical.’

The orthogonality restrictions on the stochastic components are as follows:
e L (€2, &5, Wity Iit),
egt 1 (efta I')["f'll‘a Iit)a (O)
e L (Wi, L),

where we say that V' L U if EVU = 0. This is a standard way of representing restrictions
on errors in structural equation modeling.'0**

The observed variables are generated by setting « = I;; and propagating the system from
the last equation to the first:

Yitre =Yisro(Bit, Pit, Iit),
Ba  =Ba(Psdg);
P =Py (Lit).

The system above together with orthogonality restrictions (O) implies the following col-
lection of stochastic equations for realized variables:

Y t1e = & Byt + ' Py + p' Iy + 63, Wit + €2, &Y, L Bit, Py, Iy, Wy (BPI-Y)
Bit = B'Pyy +~' Iiy + 3 Wiy + €2, 2 1 Py, Iy, Wy, (PI-B)
Py=n'Iy+ 6p Wy + €, b, L Iy, Wy (I—P)

9Under some additional independence conditions, this can be replaced by an arbitrary non-additive
function Pj(t) = p(t, Wit, €%,), such that the unconfoundedness condition stated in the next footnote holds.
10 A alternative useful starting point is to impose the Rubin-Rosenbaum type unconfoudedness condition:

Y i4e(e, oy ) AL (Pit, Bit, Lit) | Wie, Bie(+, ) AL (Pit, Lit) | Wae, Pie(c) AL Iy | Wi,
which imply, with treating stochastic errors as independent additive components, the orthogonal conditions
stated above.

1The structural equations of this form are connected to triangular structural equation models, appearing
in microeconometrics and macroeconometrics (SVARs), going back to the work of Strotz and Wold (1960).
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and
Yitre = (/B + )P+ (o/y + )it + Wiy + Eiry  Eit L Pig, Lit, Wi (PI=Y)

These equations form the basis of our empirical analysis.

As discussed below, the information variable includes case growth. Therefore, an orthog-
onality restriction %, L P;; holds if the government does not have knowledge on future
case growth beyond what is predicted by today’s case growth, policies, behavior, and con-
founders; even when the government has some knowledge on €%, the orthogonality restriction
may hold if there is a time lag for the government to implement its policies based on eé’t.

The orthogonality condition in (PI—Y) is weaker than the orthogonality conditions in
(BPI—-Y)-(PI—B) in that the former is implied by the latter but not vice versa. The system
over-identifies the regression coefficients because (/' + ') and (/' + i) in (PI=Y) can
be also identified from o/, 7/, i/, B/, and 4/ in (BPI=Y)-(PI—B). Comparing the estimates
of (/B +7') and (o/+ + ') from (PI—=Y) with those implied by the estimates of o/, 7/,
w', B, and 4/ from (BPI=Y)-(PI—B) provides a useful specification test.

Identification and Parameter Estimation. The orthogonality equations imply that
these are all projection equations, and the parameters of the SEM are identified by the
parameters of these regression equation, provided the latter are identified by sufficient joint
variation of these variables across states and time.

The last point can be stated formally as follows. Consider the previous system of equa-
tions, after partialling out the confounders:

¥ 155 ! D I'r D D T
Yitve =0'Biy+7'Py+ p'Iy+eY, &Y L By, Py, Iy,

Bit :ﬁ/ﬁit + 'Y/iit + 6%, 5% 1 ]Sita j’ita (1)
P, =n'I;s + s el L It

where Vj; = Viy— W LE[W W/, ]7E[W;: Vi) denotes the residual after removing the orthogonal
projection of Vi; on W;;. The residualization is a linear operator, implying that (1) follows
immediately from the above. The parameters of (1) are identified as projection coefficients
in these equations, provided that residualized vectors appearing in each of the equations
have non-singular variance, that is

Var(P}, Bl,,I!,) > 0, Var(P},I!,) > 0, and Var(I!,) > 0. (2)
it ity it

Our main estimation method is the standard correlated random effects estimator, where
the random effects are parameterized as functions of observable characteristic, 1/;;, which
include both state-level and time random effects. The state-level random effects are mod-
eled as a function of state level characteristics, and the time random effects are modeled
by including month dummies and their interactions with state level characteristics. The
stochastic shocks {e;;}7_; are treated as independent across states i and can be arbitrarily
dependent across time t within a state.
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A secondary estimation method is the fixed effects estimator, where 1V;; includes latent
(unobserved) state level effects 17, and and time level effects 17;, which must be estimated
from the data. This approach is much more demanding of the data and relies on long
cross-sectional and time histories. When histories are relatively short, large biases emerge
and they need to be removed using debiasing methods. In our context, debiasing changes
the estimates substantially, often changing the sign of coefficients.'?> However, we find the
debiased fixed effect estimates are qualitatively and quantitatively similar to the correlated
random effects estimates. Given this finding, we chose to focus on the latter, as it is a
more standard and familiar method, and report the former estimates in the supplementary
materials for this paper.!?

2.2. Information Structures and Induced Dynamics. We consider three examples of
information structures: Information variable is a function of time:

I = g(b);
Information variable is lagged value of outcome:
It = Yi;

and finally:

(I) Information variables include time, lagged and integrated values of outcome:

t/0 !

Li= | 9®),Yit, Y Yietm |
m=0
with the convention that Y;: = 0 for ¢ < 0.

The first information structure captures the basic idea that, as individuals discover more in-
formation about covid over time, they adapt to safer modes of behavior (stay-at-home, wear
masks, wash hands). Under this structure, information is common across states and exoge-
nously evolves over time, independent of the number of cases. The second structure arises
from considering autoregressive components and captures people’s behavioral response to
information on cases in the state they reside. Specifically, we model persistence in growth
rates, Y; ;1¢, through an AR(1) model, which leads to I;; = Yj;. This provides useful local,
state-specific, information about the forward growth rate and people may adjust their be-
havior to safer modes when they see a high value. We model this adjustment via the term
~'I; in the behavior equation. The third information structure is the combination of the
first two structures plus an additional term representing the log of the total number of new
cases in the state. We use this information structure in our empirical specification. In this
structure, people respond to both global information, captured by a function of time such

12This is a pre-cautionary message that may be useful for other researchers using fixed effects estimators
in the context of Covid-19 analysis. We recommend using debiased fixed effects estimators, see e.g., Chen,
Chernozhukov, and Ferndndez-Val (2019) for expository treatment.

13The similarity of the debiased fixed effects and correlated random effects served as a useful specification
check. Moreover, using the fixed effects estimators only yielded minor gains in predictive performances, as
judging by the adjusted R?’s, providing another useful specification check.
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as month dummies, and local information sources, captured by the local growth rate and
the total number of cases. The last element of the information set can be thought of as a
local stochastic trend in cases.

All of these examples fold into a specification of the form:
Iit = Iit(Ii,tfég Yimt), fh= 1, ceey T, (I)

with the initialization I;0 = 0 and Yjo = 0.14

With any structure of this form, realized outcomes may become new information for
future periods, inducing a dynamical system over multiple periods. We show the resulting
dynamical system in a causal diagram of Figure 5. Specification of this system is useful
for studying delayed effects of policies and behaviors and in considering the counterfactual
policy analysis.

(+1)nas

FIGURE 5. Dynamic System Induced by Information Structure and SEM

2.3. Outcome and Key Confounders via SIR model. Letting C;; denote the cumu-
lative number of confirmed cases in state i at time ¢, our outcome

Vi = Alog(ACy) := log(AC;:) —log(AC; 1—7) (3)

approximates the weekly growth rate in new cases from t — 7 to ¢.!> Here A denotes the
differencing operator over 7 days from ¢ to ¢t — 7, so that ACj; := Cjt — C; ¢+—7 is the number
of new confirmed cases in the past 7 days.

We chose this metric as this is the key metric for policy makers deciding when to relax
Covid mitigation policies. The U.S. government’s guidelines for state reopening recommend
that states display a “downward trajectory of documented cases within a 14-day period”
(White House, 2020). A negative value of Yj;; is an indication of meeting this criteria for
reopening. By focusing on weekly cases rather than daily cases, we smooth idiosyncratic
daily fluctuations as well as periodic fluctuations associated with days of the week.

1 This initialization is appropriate in our context for analyzing pandemics from the very beginning, but
other initializations could be appropriate in other contexts. The lagged values of behavior variable may be
also included in the information set.

15We may show that log(AC;:) — log(AC;,¢—7) approximates the average growth rate of cases from ¢ — 7
to .

CDC_TMO 000188



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 45 of 93 PagelD 441

CAUSAL IMPACT OF MASKS, POLICIES, BEHAVIOR 13

Our measurement equation for estimating equations (BPI—Y) and (PI—=Y) will take the
form:

A IOg(ACZ't) = X’I{,t—149 =+ orA log(ﬂt) + €5, (M—C)

where i is state, t is day, Cj; is cumulative confirmed cases, Tj; is the number of tests over
7 days, A is a 7-days differencing operator, €;; is an unobserved error term. X;; 14 collects
other behavioral, policy, and confounding variables, depending on whether we estimate
(BPI-Y) or (PI—=Y), where the lag of 14 days captures the time lag between infection and
confirmed case (see the Appendix A.6). Here

Alog(Ty) = log(Tit) — log(Tit—7)

is the key confounding variable, derived from considering the SIR model below. We describe
other confounders in the empirical section.

Our main estimating equation (M-C) is motivated by a variant of SIR model, where we
add confirmed cases and infection detection via testing. Let S, Z, R, and D denote the
number of susceptible, infected, recovered, and dead individuals in a given state. Each of
these variables are a function of time. We model them as evolving as

S()

$() = -2 B)T() 4)
10 = 2P gyz(n) vz Q
R(t) = (1~ myyZ(1) (©
D(t) = kyZ(t) (7)

where N is the population, 3(t) is the rate of infection spread,  is the rate of recovery or
death, and & is the probability of death conditional on infection.

Confirmed cases, C(t), evolve as
C(t) = 7(t)Z(t), (8)

where 7(t) is the rate that infections are detected.

Our goal is to examine how the rate of infection 3(t) varies with observed policies and
measures of social distancing behavior. A key challenge is that we only observed C(t) and
D(t), but not Z(t). The unobserved Z(t) can be eliminated by differentiating (8) and using
(5) as

Ct) _ S(t) (1)

o) :TB(L‘)—V'*‘%- 9)

We consider a discrete-time analogue of equation (9) to motivate our empirical specification
by relating the detection rate 7(¢) to the number of tests T;; while specifying % B(t) as a
linear function of variables X;;_14. This results in
IA 10g(ACit)l = X{’t_149 + €t -|-I5TA log(T)itI
L []

@) S(t )
0] 50 (t)— (@)
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which is equation (M-C), where X;; 14 captures a vector of variables related to B(t).

STRUCTURAL INTERPRETATION. Early in the pandemic, when the num-
ber of susceptibles is approximately the same as the entire population, i.e.
Sit/Nit =~ 1, the component Xz(,t—149 is the projection of infection rate 3;(t)
on X; ;14 (policy, behavioral, information, and confounders other than test-
ing rate), provided the stochastic component ¢;; is orthogonal to X; ;14 and
the testing variables:

Bi(t)Sit/Nit — v = X4 140 +€it, € L Xy 14.

2.4. Growth Rate in Deaths as Outcome. By differentiating (7) and (8) with respect
to t and using (9), we obtain
D) C@) () St
(0 _ 6 _H0) _SW i
Dt cC@) T N
Our measurement equation for the growth rate of deaths is based on equation (10) but
account for a 21 day lag between infection and death as

Alog(ADgt) = X ; 0,0 + €it, (M-D)

(3

where
Alog(AD;) :=1log(AD;t) — log(AD;—7) (11)

approximates the weekly growth rate in deaths from ¢t — 7 to ¢ in state 3.

3. DECOMPOSITION AND COUNTERFACTUAL PoOLICY ANALYSIS

3.1. Total Change Decomposition. Given the SEM formulation above, we can carry out
the following decomposition analysis, after removing the effects of confounders. For exam-
ple, we can decompose the total change EY; ;. — EY;, in the expected outcome, measured
at two different time points ¢t + £ and o into the sum of three components:

EYe - BYig = o/ (EPy — EP,)

— 1 \
Policy Effect via Behavior

+ 7 <E]51t — E]Bio>

L I
Direct Policy Effect ( 1 2)

+ady (Efzt - EE@) + <Ef¢t = Efz'o>

Total Change

Dynamic Effect
=: PEB, + PED, + DynE,,

where the first two components capture the immediate effect and the third represents the
delayed or dynamic effect.
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In the three examples of information structure given earlier, we have the following forms
for the dynamic effect: for the trend model,

DynE, = (ya+ p)Ag, Agi = (9(t) —g(t —¢))
and for the lag model,
¢/t
DynE,; = Z (ya+ )™ (PEBt_m¢ + PED; ),
m=1

interpreting t/¢ as [t/¢]. For the general model we use, the dynamic effect is

@ DyﬂEt==E;%m(ﬂvah-%u2+(7ah-%u9m ((ya)1 + p1)Agy
+ Z"ée:l ((va)2 + p2 + (ya)3 + p3)™ (PEB;_pyy + DPE;_,.0)
t/l—1
+ 24:1 ((ya)z + p3)™ (PEBt—(m—l—l)Z + DPEt—(m+1)£) .

The effects can be decomposed into (a) delayed policy effects via behavior by summing terms
containing PE B, (b) delayed policy effects via direct impact by summing terms containing
DPE, (c) pure behavior effects, and (d) pure dynamic feedback effects.

3.2. Counterfactuals. We also consider simple counterfactual exercises, where we examine
the effects of setting a sequence of counterfactual policies for each state:

{Pi’;}g—‘:h Z:I,N

We assume that the SEM remains invariant, except of course for the policy equation.
Given the policies, we propagate the dynamic equations:

YZH% = i,t+€(Bi*t’ Pi:v I;;),
By, =Bu(P}, I}, (CEF-SEM)
i =la(li; 0, Yiist),

with the initialization I}y = 0, Y;5 = 0, Bj; = 0, P = 0. In stating this counterfactual
system of equations, we make the following invariance assumption

6

INVARIANCE ASSUMPTION. The equations of (CF-SEM) remain exactly of
the same form as in the (SEM) and (I). That is, under the policy intervention
{P}}, parameters and stochastic shocks in (SEM) and (I) remain the same
as under the original policy intervention {Pj}.

Let PY;_ , and PY;;, denote the predicted values produced by working with the coun-
terfactual system (CEF-SEM) and the factual system (SEM):
PYiiye = (&/B + )P + (/7 + W)L + 6 Wi,
PYisre = (B +7')Pi+ (o'y + ') Lt + 6' Wiz
161t is possible to consider counterfactual exercises in which policy responds to information through the
policy equation if we are interested in endogenous policy responses to information. Although this is beyond
the scope of the current paper, counterfactual experiments with endogenous government policy would be

important, for example, to understand the issues related to the lagged response of government policies to
higher infection rates due to incomplete information.
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In generating these predictions, we make the assumption of invariance stated above.

Then we can write the difference into the sum of three components:

! ! /
PYlire—PYigpe=  oB(Pi—Py)  +7 (Pi— Pa)
1 1 A ——— | I— |
Predicted CF Change CF Policy Effect via Behavior ~CF Direct Effect

/
+ o'y (I — L) + ' (I — Iit)l
L
CF Dynamic Effect

—: PEB}, + PED}, + DynE,. (13)

Similarly to what we had before, the counterfactual dynamic effects take the form:

t/l
() DynEf, =YL, (va)2+ 2+ (70)3 + p3)™ (PEBY, 0 + DPE?, /)
t/0—1
+ S0 (93 + )™ (PEBY,_ (110 + DPES, (i)

interpreting t/¢ as [t/£]. The effects can be decomposed into (a) delayed policy effects via
behavior by summing terms containing PEB, (b) delayed policy effects via direct impact by
summing terms containing DPE, (c¢) pure behavior effects, and (d) pure dynamic feedback
effects.

4. EMPIRICAL ANALYSIS

4.1. Data. Our baseline measures for daily Covid-19 cases and deaths are from The New
York Times (NYT). When there are missing values in NYT, we use reported cases and
deaths from JHU CSSE, and then the Covid Tracking Project. The number of tests for
each state is from Covid Tracking Project. As shown in Figure 21 in the appendix, there
was a rapid increase in testing in the second half of March and then the number of tests
increased very slowly in each state in April.

We use the database on US state policies created by Raifman et al. (2020). In our
analysis, we focus on 6 policies: stay-at-home, closed nonessential businesses, closed K-12
schools, closed restaurants except takeout, closed movie theaters, and mandate face mask
by employees in public facing businesses. We believe that the first four of these policies are
the most widespread and important. Closed movie theaters is included because it captures
common bans on gatherings of more than a handful of people. We also include mandatory
face mask use by employees because its effectiveness on slowing down Covid-19 spread
is a controversial policy issue (Howard et al., 2020; Greenhalgh et al., 2020; Zhang et al.,
2020b). Table 1 provides summary statistics, where N is the number of states that have ever
implemented the policy. We also obtain information on state-level covariates from Raifman
et al. (2020), which include population size, total area, unemployment rate, poverty rate,
and a percentage of people who are subject to illness.These confounders are motivated by
Wheaton and Thompson (2020) who finds that case growth is associated with residential
density and per capita income.
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N Min Median Max
Date closed K 12 schools 51 2020-03-13 2020-03-17 2020-04-03
Stay at home shelter in place 42 2020-03-19 2020-03-28 2020-04-07
Closed movie theaters 49 2020-03-16 2020-03-21 2020-04-06
Closed restaurants except take out 48 2020-03-15 2020-03-17 2020-04-03
Closed non essential businesses 43 2020-03-19 2020-03-25 2020-04-06
Mandate face mask use by employees 39 2020-04-03 2020-05-01 2020-06-01

TABLE 1. State Policies

FIGURE 6. The Evolution of Google Mobility Measures: Transit stations
and Workplaces

Evolution of transit intensity Evolution of workplaces intensity

Percent Change

Percent Change
5 N
&

This figure shows the evolution of “Transit stations” and “Workplaces” of Google Mobility Reports. Thin gray lines
are the value in each state and date. Thicker colored lines are quantiles of the variables conditional on date.

We obtain social distancing behavior measures from“Google COVID-19 Community Mo-
bility Reports” (LLC, 2020). The dataset provides six measures of “mobility trends” that
report a percentage change in visits and length of stay at different places relative to a
baseline computed by their median values of the same day of the week from January 3
to February 6, 2020. Our analysis focuses on the following four measures: “Grocery &
pharmacy,” “Transit stations,” “Retail & recreation,” and “Workplaces.”'”

9

Figure 6 shows the evolution of “Transit stations” and “Workplaces,” where thin lines
are the value in each state and date while thicker colored lines are quantiles conditional on
date. The figures illustrate a sharp decline in people’s movements starting from mid-March
as well as differences in their evolutions across states. They also reveal periodic fluctuations
associated with days of the week, which motivates our use of weekly measures.

In our empirical analysis, we use weekly measures for cases, deaths, and tests by sum-
ming up their daily measures from day ¢ to t — 6. We focus on weekly cases and deaths
because daily new cases and deaths are affected by the timing of reporting and testing,
and are quite volatile as shown in Figure 17 in the appendix. Aggregating to weekly new
cases/deaths/tests smooths out idiosyncratic daily noises as well as periodic fluctuations

17The other two measures are “Residential” and “Parks.” We drop “Residential” because it is highly
correlated with both “Workplaces” and “Retail & recreation” at correlation coefficients of -0.98. We also
drop “Parks” because it does not have clear implication on the spread of Covid-19.
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TABLE 2. Correlations among Policies and Behavior

- #
[} n Q
) = - .
(] + & 0
g @ Q ) = g
0 3 N £ = & =
8 5 , & 3 8 2
& = g z 2 3 T B T 3
x & =2 § 4 & » & & &
B I 5b ] S 5] % < o o
workplaces 1.00
retail 094 1.00
grocery 0.75 0.82 1.00
transit 090 0.92 0.83 1.00
masks for employees -0.32 -0.19 -0.16 -0.30 1.00
closed K-12 schools -0.92 -0.81 -0.58 -0.75 0.46 1.00
stay at home -0.70 -0.69 -0.71 -0.72 0.31 0.65 1.00
closed movie theaters -0.82 -0.77 -0.65 -0.72 0.40 0.85 0.75 1.00
closed restaurants -0.79 -0.83 -0.69 -0.77 0.26 0.77 0.74 0.84 1.00
closed businesses -0.66 -0.68 -0.68 -0.66 0.12 0.59 0.77 0.69 0.73 1.00

Each off-diagonal entry reports a correlation coefficient of a pair of policy and behavior variables.

associated with days of the week. We also construct weekly policy and behavior variables
by taking 7 day moving averages from day t — 14 to t — 21 for case growth, where the delay
reflects the time lag between infection and case confirmation. The four weekly behavior
variables are referred as “Transit Intensity,” “Workplace Intensity,” “Retail Intensity,” and
“Grocery Intensity.” Consequently, our empirical analysis uses 7 day moving averages of all
variables recorded at daily frequencies. Our sample period is from March 7, 2020 to June
3, 2020.

Table 2 reports that weekly policy and behavior variables are highly correlated with
each other, except for the“masks for employees” policy. High correlations may cause mul-
ticolinearity problems and could limit our ability to separately identify the effect of each
policy or behavior variable on case growth, but this does not prevent us from identifying
the aggregate effect of all policies and behavior variables on case or death growth.

Figure 7 shows the portion of states that have each policy in place at each date. For
most policies, there is considerable variation across states in the time in which the policies
are active. The one exception is K-12 school closures. About 80% of states closed schools
within a day or two of March 15th, and all states closed schools by early April. This makes
the effect of school closings difficult to separate from aggregate time series variation.
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FIGURE 7. Portion of states with each policy
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4.2. The Effect of Policies and Information on Behavior. We first examine how poli-
cies and information affect social distancing behaviors by estimating a version of (PI—B):

Bl = (B P + () it + (6%) Wit + €%,

where B';t represents behavior variable j in state 7 at time t. P collects the Covid related
policies in state 7 at t. Confounders, 1V;;, include state-level covariates, month indicators,
and their interactions. [;; is a set of information variables that affect people’s behaviors at
t. As information, we include each state’s growth of cases (in panel 3a) or deaths (in panel
3b), and log cases or deaths. Additionally, in columns (5)-(8) of each panel, we include
national growth and log of cases or deaths.

Table 3 reports the estimates with standard errors clustered at the state level. Across
different specifications, our results imply that policies have large effects on behavior. Com-
paring columns (1)-(4) with columns (5)-(8), the magnitude of policy effects are sensitive
to whether national cases or deaths are included as information. The coefficient on school
closures is particularly sensitive to the inclusion of national information variables. As shown
in Figure 7, there is little variation across states in the timing of school closures. Conse-
quently, it is difficult to separate the effect of school closures from a behavioral response to
the national trend in cases and deaths.

The other policy coefficients are less sensitive to the inclusion of national case/death
variables. After school closures, stay-at-home orders and restaurant closures have the next
largest effect. Somewhat surprisingly, closure of nonessential businesses appears to have a
modest effect on behavior. Closing movie theaters has a similar, small effect on behavior.
The effect of masks for employees is also small. The comparison of effects across policies
should be interpreted with caution. Differences between policy effects are often statistically
insignificant; except for masks for employees, the policies are highly correlated and it is
difficult to separate their effects.

The row “Zj Policy;” reports the sum of the estimated effect of all policies, which is
substantial and can account for a large fraction of the observed declines in behavior variables.
For example, in Figure 6, transit intensity for a median state was approximately -50% at

CDC_TMO 000195



"TPAS] 91B)S 9T} e PaIISN[D Ik SIOLId PIePUR)S "SJUSIDIPE0d Ao1od XIS Jo wns oty syrodox

. Fhotog .an: MOI 9YT, "0g0g ‘GT wer @ouls sAep Jo S0[ oY) YIIM SUOIJORISIUL I19Y) SB [[om se (ssouf[l 07 109(qns o[doad jo o8ejusdiod e pue ‘orelr L110a0d ‘ojel
quowrfojdwoun ‘eore ‘uorjendod) so1ISLIOORIRYD [9AS]-91R]S OPNOUT sUOIeoyIoads [y ‘s110dey] AI1[IGOIN 9]300K) W01 Poure)qo soInseawr AJrep Surpuodseliod
JO soZeloae ulaOwW sAep ), Se pouyep ,AJISusqu] AI000IK), pue  ‘A1Isueju] [re1oy,, . ‘A11suoju] o0R[dj{IOA,, ‘A1ISULIU] JISURIL],, oIe so[qelrres juopuado(]

Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 52 of 93 PagelD 448

VICTOR CHERNOZHUKOV, HIROYUKI KASAHARA, AND PAUL SCHRIMPF

20

100>d,,, '60°0>d,, ‘T0>d,

190N

ces’0 €6L°0 106°0 c¥6°0 0180 98.°0 €68°0 z16°0 -4 pesnlpy
9€8°0 ¥6L°0 2060 c¥6°0 T80 880 ¥38°0 z16°0 e |
¥8¢'7 ¥8¢'7 ¥8¢'¥ ¥8¢'7 ¥8¢'7 ¥8¢'7 ¥8¢'7 ¥8¢'7 SUOI}eAIISq ()
(Le1°9) (gzee) (6¢8°C) (€26°1) (€18°9) (9vze) (eveg) (962°¢)
wssOLLCT  aa T8I uaF06°08"  wanClBET" wauSIGTT  waaGIGLT" wualBSTF  1kn669°62- fforog ‘X
Sox SOX Sox SOX Sox Sox Sox Sox so[qerIeA 9Je)s X YJUON
Sox SOX Sox SOX Sox Sox Sox SOX So[qeLIRA 97€)S
(96€°T) (928°0) (£¢8°0) (0¥¥°0)
wiiVIBE—  anaBRET— w868 w09 [euorjeu ¥y S0
(L8T°T) (089°0) (65L°0) (esv o)
wxxV6TE—  BIE0— 4uu0S6'9— 866G — [euorjeu #)y; Sopy
(e82°1) (e¥s0) (¥8L°0) (0¥€°0) (GL1'1) (18%°0) (006°0) (€6%°0)
L66°0 0880 0120 99€°0— T60'T— €T 0 WFE6 T~ LL0T°C— ")V 0]
(109°0) (€07°0) (82€°0) (122°0) (£95°0) (92.€°0) (zes0) (9g€°0)
wxx 16G°T wxs0TL'T x8GT°T +968°T wxxlG8T w:0L8°T <9701 wxx16L°T 2oV 8o1v
(L16°T) (186°0) (ger'T) (806°0) (6£0°2) Frvo°1) (29¢'1) (911°1)
016 T— SSIVT—  LLVIC— W IETT— 00€'T— 06€°T— ZRET— LTV6'T— S9SSOUISI( Paso[o
(c9¢2) (€29°0) (200°'1) (869°0) (L85°2) (9¢L°0) (00S°T) (210°T)
2 786°6— €06'0—  +:xG60°G—  LGEVT—  ,..696'L— e T— w089 L— L IGT'E— SJURIN®)SOI PISO[D
(zgz'T) (ocr'1) (o1£°1T) (0z8°0) (6c¢T) (00Z°T) (L09°T) (gor'T)
Y9L'1 wEV9C—  L.190°€— OV 1— 6211 168 T— PV e— «SLE6T— S193BaT[} SIAOW POSO[D
(L¥€2) (9¢¢'1) (¥S1'1) (L86°0) (99¢°2) (19¢'T) (9%€'1) (e¥0'T)
(898°%) (¥¥6'2) (6L6°T) (9zs°1) (L69°¢) (9¢5°2) (60%'%) (0g8°2)
LTS a€36°L—  EL8T— ex806FT—  aF69TT— wunICO'ET—  1yx868'TC—  4xn8L96T— S[ooPs -3 pasopo
(¥60°2) (206°0) (L¥€'T) (099°0) (e12°2) (2e6°0) (e16°T) (£28°0)
JVOV—  ,aCCVC—  LCTVT— z18°0— YOT'€— LT L0TT— 110°0— soodordwe 10§ syseW
(8) (L) (9) (g) ) (€) (c) (1)
Jsues) A190013 | LCHERS seor[dyIom JIsueI) A100013 [rejax sooe[dyiom

:191QIDA JUIPUID (T

uoryeurIojuy se sose) (V)

(g+1d) 01aRyeg UO UOTIRULIOJU] PUR SAII[OJ JO 1990FH 9Y ], '€ A4V,

CDC TMO 000196



21

"TPAS] 91B)S 9T} Je POIISN[D oIk SIOLId PIePUR)S "SJUSIDIPR0d Aorod XTIs Jo wns oy} syrodox

. Fhorog .mmW: MOI 9YT, "0g0g ‘GT wer 9ouls sAep Jo S0[ oY) YIIM SUOIJORISIU] 11913 SB [[om se (ssouf[l 01 109(qns o[doad jo o8ejusdiod e pue ‘o1el A110a0d ‘ojel
quowrfojdwoun ‘eore ‘uorjendod) so1IsLIofoRIRYD [9AS]-09R]S OPNOUl sUOIeoyIoads [y ‘s310dey] AI1[IqOIN 9]800r) W01} Poure)qo soinseawr AJrep Surpuodseriod
JO so8rIose 3ulaow sAep ), S® pauyep A1ISUsju] AI000I1r), pue  ‘AjISuoqul [1e}9Y,, . ‘AIIsuequ] 90R[dyIOAM,, . ‘AJISUejU] JISURI],, 9Ie so[qelIeA Juopuado(]

Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 53 of 93 PagelD 449

CAUSAL IMPACT OF MASKS, POLICIES, BEHAVIOR

10°0>d,,, ‘c0'0>d,, ‘T0>d, 230N
€€8°0 16L°0 7060 €76°0 608°0 9LL°0 678°0 206°0 -4 passnlpy
7€8°0 T6L0 G06°0 €76°0 0180 8LL°0 068°0 206°0 ot
¥8¢'7 ¥8¢'7 78¢'¥ ¥8¢'7 ¥8¢'7 ¥8¢'7 ¥8¢'7 ¥8¢'7 suoryeAIRsqQ
(L00°9) (8g2°€) F¥1°e) (611°2) (18L°9) (¢862) (¥09°€) (e522)
wenI8G€C"  4ui0LT'8T- L IVE'6T- L 00T €T~ . FSG 97~ . G66°L0 L..GC0°8%-  ,..760°GE- fforjog ‘X
Sox Sox Sox Sox Sox Sox Sox Sox So[qeLIeA 9)B)S X IUOIN
Sox Sox Sox Sox Sox Sox Sox Sox SO[qRLIBA 9))S
(L66°0) (19¢°0) (¥65°0) (0z¥°0)
w1669~ L TELT— . F88°L—  ,..0TE9— [euoyeU #(7 V7 50
(e€8°0) (677°0) (619°0) (ece0)
eex869F—  iTGET— €889~ 990 [euonyeu (v 801 v
(¥82°1) (609°0) (06L°0) (60%°0) (g61°T) (295°0) (1%2°0) (68€°0)
YET0 6L1°0 ) 0] 759°0— 292 0— LS00 G81°0— il 0T~ " v 8o
(8256°0) (eev0) (8e7°0) (L£2°0) (619°0) (817°0) (265°0) (LOV"0)
190°0— 9e1°0 8L70— gI1°0 890 T— 697 0— w080~ ,,8G6°0— nqv Soly
(€20°2) (090°1) (09T°T) (968°0) (LL07T) (921°T) (eve'T) (ge0'T)
€9G°0— LV0'T— LL6°0— TLOT— 969 T— wITG G L188°C— 90T°C— sessoulsng pasopo
(LeV'T) (099°0) (910°'1) (L0L0) (e86°2) (esL0) (696°T) (¥or'1)
S8E8C— 0070~  uubI6F— L L0CT— FE6L— LIS T— wexBLG L= L BLTE— S)URIN®)SOI PISO[D
(12€2) FP1°1) (62,£1) (028°0) (¥9¢2) (622°T) (€69°'1) (0¥1°T)
GT6'T 986 C—  ,T99°C— ze0'T— 869°0 00T’ E— SV T— +860°C— $19Yea7[} SIAOW PISOTD
(L89°2) (81¢°1) (881°T) (626°0) (e19°2) (gzs'1) (L¥eT) (686°0)
eexVC0 6= 4aubTT 9™ 4ux866'G— wukB6L T wun9L8— 0609~  L.68G°G— ,..6L87T— owoy e Aeqs
(LEL'T) (8L€°2) (ve6°'1) (€0L'T) (818°¢) (12L°1) ([443) (ecz'2)
AL 6G8°€— 006'T— s GGEC— L OF6TC— 0980T~ L, TLT'9C—  L,.9STFC— s[ooyps -3 pasop
(022°2) (686°0) (68€°T) (2¥9°0) (0zg'2) (6<0°T) (eT¥'1) (ggL0)
w88 F— Lk9GT'E— L L8VE— «~GEET— J16°6— «0CLC— L1CG— L1V 0— seakodure 10§ syseur
(8) (L) (9) (g) (%) (€) (c) (1)
JIsueI) A190013 | LCHERS seor[dyIoMm JIsuRI)} A190013 [rejax sooe[dyiom

:91QILDA JUIPUII (T

uoryeuLIoju] se syjyed(] (d)

CDC TMO 000197



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 54 of 93 PagelD 450

22 VICTOR CHERNOZHUKOV, HIROYUKI KASAHARA, AND PAUL SCHRIMPF

its lowest point in early April. The estimated policy coefficients in columns imply that
imposing all six policies would lead to roughly 85% (in columns 1-4) or roughly 50% (in
columns 5-8) of the observed decline. The large impact of policies on transit intensity
suggests that the policies may have reduced the Covid-19 infection by reducing people’s use
of public transportation.'®

In panel 3b, estimated coefficients of deaths and death growth are generally negative. This
suggests that the higher number of deaths reduces social interactions measured by Google
Mobility Reports perhaps because people are increasingly aware of prevalence of Covid-19
(Maloney and Taskin, 2020). The coefficients on log cases and case growth in panel 3a
are more mixed. In columns (5)-(8) of both panels, we see that national case/death vari-
ables have large, negative coefficients. This suggests that behavior responded to national
conditions although it is also likely that national case/death variables capture unobserved
aggregate time effects beyond information (e.g., latent policy variables and time-varying
confounders that are common across states) which are not fully controlled by month dum-
mies.

FIGURE 8. Case and death growth conditional on mask mandates

AlogAC;; given masks for employees AlogAD; given masks for employees
1.0 1.0 i3
0.5
o a
3 3 00
e} o
S| <
-0.5
-1.0 : -1.0
Apr 15 May 01 May 15 Jun 01 Apr 15 May 01 May 15 Jun 01

In these figures, red points are the case or death growth rate in states without a mask mandate. Blue points are
states with a mask mandate 14 (21 for deaths) days prior. The red line is the average across states without a mask
mandate 14 (21 for deaths) days earlier. The blue line is the average across states with a mask mandate 14 (21 for
deaths) earlier.

4.3. The Direct Effect of Policies and Behavior on Case and Death Growth. We
now analyze how behavior and policies together influence case and death growth rates. We
begin with some simple graphical evidence of the effect of policies on case and death growth.
Figure 8 shows average case and death growth conditional on date and whether masks are
mandatory for employees.!® The left panel of the figure shows that states with a mask

18 Analyzing the New York City’s subway ridership, Harris (2020) finds a strong link between public
transit and spread of infection.

19We take 14 and 21 day lags of mask policies for case and death growths, respectively, to identify the
states with a mask mandate because policies affect cases and deaths with time lags. See our discussion in
the Appendix A.6.

CDC_TMO 000198



23

"ToAS] 99B)S O[] JB POISISN[D dI€ SIOLId pIepur)S YIQT-IST [[Idy WOIJ S[qelIeA [RIOIARYS(] [JBd JO oFelore

oy} Aq PajySrom SO[qELIEA IOIARYA( JO SHUSIOYP0D INOj Jo wmns ayy syrodor  Aromeyogidm 47, mox oy, "syusygeod Lorjod xIs Jo wms oy sprodor , fsaroroq .an:
MOI 9T, ‘soInseaul A[rep Surpuodsoliod JO ), — 7 0} 7 U9MmJoq SoFelose SUIAOUW Aep ), SB PIIOILIJSUOD oIe YOIYM ‘So[qeLIeA IolaRyeq pue Adorjod pad3el opnout
sapeLIeA0d oy ], ‘(g) uorenbe ur peuyep se ([oued 9yt oy} ul) syjeop 1o ([oued 9J9] 9Y} UI) SISLD POULIYUOD JO 91BI YIMOIZ A[oom o) SI o[qelrres Juapuado

21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 55 of 93 PagelD 451

Case 8

CAUSAL IMPACT OF MASKS, POLICIES, BEHAVIOR

100>d,,, 0°0>d,, ‘1T0>d, ‘a30N | 10°0>d,,, ‘¢0'0>d,, ‘T°0>d, PION
L1°0 L1970 919°0 9120 -4 poysulpy 29L°0 29L°0 18470 18470 2 passulpy
440} 7890 1280 1290 S G9L°0 G9.°0 6SL°0 6SL°0 A
89%‘¢€ 97°€ 897°¢ 897°¢ SUOI}RAIISqQ £28‘e £€e8'e £28‘e £€28'e SUOIYRAIDSqO

(621°0) (181°0) (£91°0) (#91°0) (zs1°0) (es1°0) #¥1°0) (e¥1°0)

wxxOFO 0" wykOP9°0°  4k0L8°0" . kTL8°0" drowmeypg im 1 | 8980~ «xCLE 0" wxn€GL°07  ,,98L°0" A1o1avyegim 1

(80z°0) (921°0) (861°0) (#91°0) (821°0) (091°0) (9s1°0) (921°0)

«xCCH 0" 2920~ «x687°0" «+VEE 0" fforog X 68T°0- 8L0°0- 78T 0" GeT'0- ffonog X
EE)N Sox SoX Sox so[qerIeA 9je)s X YJUOIA SOx EE)N Sox SoX S9[qRIIRA 93®)S X YJUOIA
So X wwxﬂ SoA So X ww?#didxw Q3els SO So X mwxﬂ SoA ww~£d_.~d> 2je)ls

(z%0°0) (z%0°0) #¥0°0) (#%0°0)
«xx8ST°0 +xx88T°0 +xxEGT°0 «xxEST°0 L 8o1v

(6£0°0) (6£0°0) (8%0°0) (8%0°0)

090°0— 090°0— (1g ‘Tevoneuw #q v 301)Se[ |, P8I0~  ,..F8T0— (V1 ‘Teuoneu 115y Soy)Se|

(s%0°0) (s%0°0) (¥%0°0) #%0°0)

Lv0'0— 9v0°0— (1g ‘reuoneu- 'y 301 v)3e[ | 6800~ +x060°0— (71 ‘reuoneu #Hy o[ v)Se

(¥20°0) (¥20°0) (520°0) (g20°0) (120°0) (120°0) (610°0) (610°0)

«x6700— «x670°0— «x180°0— +x1S0°0— (T2 ‘A V B0D)3e[ | 6800~  44x680°0—  ,,xOTT'0— 4, 0TT'0— (F1 **OWV 801)3e|

(2£0°0) (2£0°0) (¥£0°0) (¥£0°0) (820°0) (820°0) (520°0) (520°0)

L10°0 L10°0 910°0 9100 (12 “**a v 801 v)3e| €200 £20°0 L10°0 L10°0 (F1 OV 801 v)3e|

(£00°0) (£00°0) (£00°0) (£00°0) (£00°0) (£00°0) (£00°0) (£00°0)

£00°0 £00°0 £00°0 £00°0 (12 ‘ysuery)Sey £00°0 £00°0 £00°0 £00°0 (T ‘y1sueay)Ser

(¥00°0) (¥00°0) (¥00°0) (¥00°0) (£00°0) (£00°0) (£00°0) (£00°0)

«xx0100—  ,,,01000— ,,,0100— ,,,010°0— (1 ‘A1090018)Fe] z00°0— z00°0— ¥00°0— $00°0— (P1 ‘A190013)3e]

(¥00°0) (¥00°0) (¥00°0) (#00°0) (€£00°0) (£00°0) (£00°0) (£00°0)

900°0 9000 900°0 900°0 (1T ‘Tresen)Se| €00°0 £00°0 +S00°0 «S00°0 (P1 ‘Irejer)Sel
(900°0) (500°0) (500°0) (g00°0) (900°0) (900°0) (900°0) (900°0)
600°0 6000 I 2 0] wxxPT00 (Tg ‘seoedsizom)se| £00°0 £00°0 L0T0°0 L0100 (P1 ‘seoedsiiom)Sef

(850°0) (850°0) (950°0) (950°0) (z%0°0) (2%0°0) (z%0°0) (z%0°0)

200°0— £00°0— £00°0— £00°0— (Tg ‘sessoulsnq pesopo)3e| S10°0— 910°0— £00°0— $00°0— (P1 ‘sesseutsng peso[o)3e|

(290°0) (290°0) (290°0) (L90°0) (s%0°0) (9%0°0) (8%0°0) (8%0°0)

180°0 180°0 G80°0 G80°0 (Tg ‘syueane)sor pasopo)se| 120°0 1200 020°0 000 (T ‘syueanesox posoo)se|

(060°0) (060°0) (160°0) (160°0) (6%0°0) (8%0°0) (6%0°0) (6%0°0)

2500 ¥S0°0 8£0°0 6£0°0 (Tg ‘s1egeayy arrow posopd)se| 720°0 £80°0 %070 670°0 (P1 ‘s1ogeoyy o1AOW PosOd)Se]

(#90°0) (£90°0) (590°0) (g90°0) (6%0°0) (8%0°0) (8%0°0) (L%0°0)

8%0°0— L¥0°0— T70°0— 0%0°0— (1g ‘owoy ye Aeys)Se| $90°0— $90°0— V00— 170°0— (71 ‘ewroy ye Aeys)Se|

(¥60°0) (¥60°0) (960°0) (960°0) (¢01°0) (¢01°0) (680°0) (680°0)

«+102°0— wxBBT 0~ uBLT 0~ 4uuILT0— (1z ‘sjooyos gI-3 pesopo)sel $20°0 S20°0 960°0— S60°0— (T ‘sjooyss gI-3 pesoo)sel

(650°0) (190°0) (¥£0°0) (8€0°0)

++8€T°0— +x8ET°0— (1g ‘Aepysysew)Bey | ., 7600~ ++080°0— (1 ‘KRN ys3isew )|

(280°0) (280°0) (150°0) (150°0)

+x99T°0— L68T°0— (1g ‘madyysysew)Ser | TTT°0— +860°0— (F1 ‘qdy ysyseur)Se|

(150°0) (250°0) (z€0°0) (g€0°0)
s SVT0— xSV 0— (1g ‘seakordure 10] syseur)3e| e nl60°0— xV780°0— (§1 ‘seokordwe 10] syseur)3e|
) (¢) (z) (D) ¥) (€) (z) 3]
gy 8oy 1Dy 301y
:91QD14DA JUIPUIAD (T :9]1QD14D0 JUIPUIAD (]

(X Idd) ymmoIr) 1jea(] pue ase)) U0 SoI[0d PuR IolAyag JO 109 H 19911 oY ], § ATdV],

CDC TMO 000199



Case 8:21-cv-01693-KKM-AEP Document 32 Filed 11/17/21 Page 56 of 93 PagelD 452

24 VICTOR CHERNOZHUKOV, HIROYUKI KASAHARA, AND PAUL SCHRIMPF

mandate consistently have 0-0.2 lower case growth than states without. The right panel
also illustrates that states with a mask mandate tend to have lower average death growth
than states without a mask mandate.

Similar plots are shown for other policies in Figures 23 and 24 in the appendix. The figures
for stay-at-home orders and closure of nonessential businesses are qualitatively similar to
that for masks. States with these two policies appear to have about 0.1 percentage point
lower case growth than states without. The effects of school closures, movie theater closures,
and restaurant closures are not clearly visible in these figures. These figures are merely
suggestive; the patterns observed in them may be driven by confounders.

‘We more formally analyze the effect of policies by estimating regressions. We first look at
the direct effect of policies on case and death growth conditional on behavior by estimating
equation (BPI—-Y):

Y;’H,g = O/Bz't + 7T/Pit + //IZ-t + ()‘g Wi + E:Zf’ (14)

where the outcome variable, Y; ;. , is either case growth or death growth.

For case growth as the outcome, we choose a lag length of £ = 14 days for behavior,
policy, and information variables to reflect the delay between infection and confirmation of
case.? B, = (BL, ..., B%) is a vector of four behavior variables in state i. P includes the
Covid-related policies in state ¢ that directly affect the spread of Covid-19 after controlling
for behavior variables (e.g., masks for employees). We include information variables, I;,
that include the past cases and case growths because the past cases may be correlated
with (latent) government policies or people’s behaviors that are not fully captured by our
observed policy and behavior variables. We also consider a specification that includes the
past cases and case growth at the national level as additional information variables. 1V, is a
set of confounders that include month dummies, state-level covariates, and the interaction
terms between month dummies and state-level covariates.?! For case growth, 17/, also
includes the test rate growth Alog(T); to capture the effect of changing test rates on
confirmed cases. Equation (14) corresponds to (M-C) derived from the SIR model.

For death growth as the outcome, we take a lag length of ¢ = 21 days. The information
variables [;; include past deaths and death growth rates; 17/;; is the same as that of the case
growth equation except that the growth rate of test rates is excluded from 1V;; as implied
by equation (M-D).

Table 4 shows the results of estimating (14) for case and death growth rates. Column
(1) represents our baseline specification while column (2) allows the effect of masks to be
different before and after May 1st. Columns (3) and (4) include past cases/deaths and
growth rates at national level as additional regressors.

2075 we review in the Appendix A.6, a lag length of 14 days between exposure and case reporting, as
well as a lag length of 21 days between exposure and deaths, is broadly consistent with currently available
evidence.

2IMonth dummies also represent the latent information that is not fully captured by the past cases and
growths.
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The estimates indicate that mandatory face masks for employees reduce the growth rate
of infections and deaths by 8-15 percent, while holding behavior constant. This suggests
that requiring masks for employees in public-facing businesses may be an effective preventive
measure.?? The estimated effect of masks on death growth is larger than the effect on case
growth, but this difference between the two estimated effects is not statistically significant.

Except for mask requirements, policies appear to have little direct effect on case or death

growth when behavior is held constant. The one exception is that closing schools has a
large and statistically significant coefficient in the death growth regressions. As discussed
above, there is little cross-state variation in the timing of school closures, making estimates
of its effect less reliable.
The row “», wipBehaviory” reports the sum of estimated coefficients weighted by the
average of the behavioral variables from April 1st-10th. The estimates of —0.76 and —0.87
for «} ", wxBehaviory” in column (1) imply that a reduction in mobility measures relative
to the baseline in January and February have induced a decrease in case and death growth
rates by 76 and 83 percent, respectively, suggesting an importance of social distancing for
reducing the spread of Covid-19. When including national cases and deaths in information,
as shown in columns (3) and (4), the estimated aggregate impact of behavior is substantially
smaller, but remains large and statistically significant.

A wuseful practical implication of these results are that Google Mobility Reports and
similar data might be useful as a leading indicator of potential case or death growth. This
should be done with caution, however, because other changes in the environment might
alter the relationship between behavior and infections. Preventative measures, including
mandatory face masks, and changes in habit that are not captured in our data might alter
the future relationship between Google Mobility Reports and case/death growth.

The negative coefficients of past cases or deaths in Table 4 is consistent with a hypothesis
that higher reported cases and deaths change people’s behavior to reduce transmission
risks. Such behavioral changes in response to new information are partly captured by
Google mobility measures, but the negative estimated coefficient of past cases or deaths
imply that other latent behavioral changes that are not fully captured by Google mobility
measures (e.g., frequent hand-washing, wearing masks, and keeping 6ft/2m distancing) are
also important for reducing future cases and deaths.

If policies are enacted and behavior changes, then future cases/deaths and information
will change, which will induce further behavior changes. However, since the model includes

22Note that we are not evaluating the effect of universal mask-wearing for the public but that of mask-
wearing for employees. The effect of universal mask-wearing for the public could be larger if people comply
with such a policy measure. Tian et al. (2020) considered a model in which mask wearing reduces the
reproduction number by a factor (1 — e - pm)?, where e is the efficacy of trapping viral particles inside the
mask and pm is the percentage of mask-wearing population. Given an estimate of Ry = 2.4, Howard et al.
(2020) argue that 50% mask usage and a 50% mask efficacy level would reduce the reproduction number
from 2.4 to 1.35, an order of magnitude impact.
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TABLE 6. Direct and Indirect Policy Effects without national case/death variables

Cases

Direct Indirect Total PI->Y Coef. Average | Difference

masks for employees -0.084** -0.008 -0.092** -0.081** -0.086** -0.011
(0.034) (0.024) (0.044) (0.040) (0.041) (0.015)
closed K-12 schools -0.095 -0.337***  -0.432*** -0.240** -0.336*** | -0.192***
(0.093) (0.091) (0.118) (0.095) (0.105) (0.047)
stay at home -0.041 -0.065** -0.106** -0.126** -0.116** 0.020
(0.046) (0.031) (0.053) (0.055) (0.054) (0.013)
closed movie theaters 0.049 -0.024 0.024 0.030 0.027 -0.005
(0.048) (0.025) (0.055) (0.050) (0.052) (0.016)
closed restaurants 0.020 -0.091*** -0.071 -0.042 -0.057 -0.029*
(0.046) (0.029) (0.044) (0.048) (0.045) (0.016)
closed businesses -0.004 -0.024 -0.028 -0.048 -0.038 0.020*
(0.041) (0.019) (0.049) (0.050) (0.049) (0.011)
Zj Policy; -0.155 -0.550***  -0.704*** -0.508*** -0.606*** | -0.196***
(0.136) (0.140) (0.188) (0.157) (0.171) (0.052)
Alog AC; 0.017 0.023** 0.040* 0.040* 0.040* 0.000
(0.025) (0.010) (0.023) (0.024) (0.023) (0.006)
log AC;¢ -0.110***  -0.036**  -0.146*** -0.138*** -0.142*** -0.008
(0.019) (0.014) (0.026) (0.023) (0.024) (0.007)
Deaths
Direct Indirect Total PI->Y Coef. Average | Difference
masks for employees  -0.145*** -0.004 -0.149*** -0.133*** -0.141*** -0.016
(0.050) (0.023) (0.055) (0.051) (0.052) (0.015)
closed K-12 schools -0.271***  -0.451*** -0.722%** -0.641%** -0.681*** -0.081***
(0.092) (0.082) (0.111) (0.107) (0.108) (0.026)
stay at home -0.040 -0.034 -0.074 -0.080 -0.077 0.006
(0.064) (0.035) (0.064) (0.064) (0.064) (0.015)
closed movie theaters 0.039 -0.025 0.014 0.018 0.016 -0.004
(0.091) (0.030) (0.089) (0.089) (0.088) (0.018)
closed restaurants 0.085 -0.105** -0.020 -0.015 -0.018 -0.005
(0.065) (0.042) (0.056) (0.057) (0.056) (0.016)
closed businesses -0.003 -0.024 -0.027 -0.038 -0.032 0.011
(0.055) (0.021) (0.061) (0.063) (0.062) (0.013)
Zj Policy; -0.334**  -0.644***  -0.979*** -0.889*** -0.934*** -0.090**
(0.160) (0.154) (0.171) (0.165) (0.167) (0.035)
Alog AD;; 0.016 -0.025** -0.009 -0.000 -0.004 -0.009*
(0.034) (0.011) (0.031) (0.032) (0.031) (0.005)
log AD;y -0.051** -0.018* -0.069** -0.078*** -0.073*** 0.009*
(0.024) (0.010) (0.028) (0.026) (0.027) (0.005)

Direct effects capture the effect of policy on case growth holding behavior, information, and confounders constant. Direct
effects are given by 7 in equation (BPI—Y). Indirect effects capture how policy changes behavior and behavior shift case
growth. They are given by « from (BPI—Y) times 8 from (PI—B). The total effect is # + Sa. Column “PI—Y
Coeflicients” shows the coefficient estimates from PI—Y. Columns “Difference” are the differences between the estimates
from (PI—Y) and the combination of (BPI—Y) and (PI—B) while column “Average” are their averages. Standard errors
are computed by bootstrap and clustered on state.
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TABLE 7. Direct and Indirect Policy Effects with national case/death variables

Cases

Direct Indirect Total PI->Y Coef. Average | Difference

masks for employees  -0.097*** -0.019 -0.116*** -0.105*** -0.111%** -0.011
(0.033) (0.017) (0.040) (0.038) (0.039) (0.011)
closed K-12 schools 0.025 -0.021 0.004 0.009 0.007 -0.005
(0.103) (0.040) (0.110) (0.108) (0.109) (0.015)
stay at home -0.064 -0.047** -0.112** -0.117** -0.114** 0.005
(0.047) (0.023) (0.049) (0.049) (0.049) (0.009)
closed movie theaters 0.053 -0.002 0.051 0.058 0.055 -0.006
(0.048) (0.017) (0.048) (0.046) (0.047) (0.011)
closed restaurants 0.021 -0.038* -0.017 -0.010 -0.013 -0.008
(0.045) (0.020) (0.041) (0.043) (0.041) (0.011)
closed businesses -0.016 -0.013 -0.028 -0.035 -0.032 0.006
(0.042) (0.012) (0.044) (0.044) (0.044) (0.008)
Zj Policy ; -0.078 -0.140** -0.218 -0.199 -0.209 -0.019
(0.160) (0.065) (0.168) (0.166) (0.167) (0.018)
Alog AC; 0.023 0.010 0.033 0.033 0.033 -0.000
(0.028) (0.007) (0.028) (0.028) (0.028) (0.003)
log AC;¢ -0.089*** 0.001 -0.088*** -0.091*** -0.090*** 0.003
(0.021) (0.011) (0.028) (0.027) (0.027) (0.005)
A log AC;¢.national -0.090** -0.040**  -0.130*** -0.123*** -0.126*** -0.006
(0.044) (0.016) (0.044) (0.042) (0.042) (0.013)
log AC;¢.national -0.184***  -0.068*** -0.252*** -0.241*** -0.247*** -0.010
(0.047) (0.022) (0.044) (0.044) (0.044) (0.010)
Deaths
Direct Indirect Total PI—>Y Coef.  Average | Difference
masks for employees ~ -0.148*** -0.018 -0.166*** -0.161*** -0.164*** -0.005
(0.048) (0.023) (0.053) (0.050) (0.051) (0.016)
closed K-12 schools -0.199** -0.038 -0.238** -0.250** -0.244** 0.012
(0.091) (0.038) (0.100) (0.099) (0.099) (0.020)
stay at home -0.047 -0.030 -0.077 -0.075 -0.076 -0.002
(0.065) (0.032) (0.063) (0.063) (0.063) (0.014)
closed movie theaters 0.054 0.007 0.061 0.065 0.063 -0.004
(0.090) (0.021) (0.086) (0.083) (0.084) (0.016)
closed restaurants 0.081 -0.058** 0.023 0.031 0.027 -0.008
(0.064) (0.024) (0.053) (0.054) (0.053) (0.014)
closed businesses -0.003 0.003 -0.000 -0.012 -0.006 0.012
(0.056) (0.016) (0.059) (0.060) (0.059) (0.012)
Zj Policy; -0.262 -0.135 -0.397** -0.402** -0.399** 0.005
(0.167) (0.085) (0.179) (0.174) (0.176) (0.024)
Alog AD;; 0.017 -0.002 0.015 0.019 0.017 -0.004
(0.037) (0.005) (0.036) (0.036) (0.036) (0.004)
log AD;y -0.049** -0.006 -0.055** -0.062** -0.059** 0.007
(0.024) (0.009) (0.028) (0.027) (0.027) (0.005)
A log AD;;.national -0.046 -0.069***  -0.115** -0.160*** -0.137*** 0.045***
(0.046) (0.021) (0.050) (0.057) (0.053) (0.013)
log AD;¢.national -0.060 -0.097***  -0.157*** -0.120*** -0.138*** | -0.037***
(0.038) (0.029) (0.032) (0.029) (0.030) (0.012)

Direct effects capture the effect of policy on case growth holding behavior, information, and confounders constant.
Direct effects are given by 7 in equation (BPI—Y). Indirect effects capture how policy changes behavior and
behavior shift case growth. They are given by « from (BPI—Y) times 8 from (PI—B). The total effect is m + Ba.
Column “PI—Y Coeflicients” shows the coefficient estimates from PI—Y. Columns “Difference” are the differences
between the estimates from (PI—Y) and the combination of (BPI—»Y) and (PI—»B) while column “Average” are
their averages. Standard errors are computed by bootstrap and clustered on state.
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lags of cases/deaths as well as their growth rates, computing a long-run effect is not com-
pletely straightforward. We investigate dynamic effects that incorporate feedback through
information in section 5.

4.4. The Total Effect of Policies on Case Growth. In this section, we focus our
analysis on policy effects when we hold information constant. The estimated effect of policy
on behavior in Table 3 and those of policies and behavior on case/death growth in Table
4 can be combined to calculate the total effect of policy as well as its decomposition into
direct and indirect effects.

The first three columns of Table 6 show the direct (holding behavior constant) and
indirect (through behavior changes) effects of policy under a specification that excludes
national information variables. These are computed from the specification with national
cases or deaths included as information (columns (1)-(4) of Table 3 and column (1) of Table
4). The estimates imply that all policies combined would reduce the growth rate of cases
and deaths by 0.70 and 0.98, respectively, out of which about two-third to three-fourth
is attributable to the indirect effect through their impact on behavior. The estimate also
indicates that the effect of mandatory masks for employees is mostly direct.

We can also examine the total effect of policies and information on case or death growth,
by estimating (PI—Y). The coefficients on policy in this regression combine both the direct
and indirect effects.

Table 5 shows the full set of coefficient estimates for (PI—=Y). The results are broadly
consistent with what we found above. As in Table 3, the effect of school closures is sensitive
to the inclusion of national information variables. Also as above, mask mandates have a
significant negative effect on growth rates.

In columns (2) and (4) of Table 5, we find that the estimated effect of mask mandates
in April is larger than that in May for both case and death regressions. This may reflect
a wider voluntary adoption of masks in May than in April — if more people wear masks
even without mandatory mask policy, the policy effect of mandating masks for employees
becomes weaker.

Table 7 presents the estimates for the specification with past national case/death vari-
ables. The effects of school closures and the sum of policies are estimated substantially
smaller in Table 7 when national case/death variables are included than in Table 6. This
sensitivity reflects the difficulty in identifying the aggregate time effect—which is largely
captured by national cases/deaths—given little cross-sectional variation in the timing of
school closures across states. On the other hand, the estimated effects of policies other
than school closures are similar between Table 6 and Table 7; the effect of other policies
are well-identified from cross-sectional variations.

Column “Difference” in Tables 6 and 7 show the difference between the estimate of
(PI=Y) in column “PI—=Y Coefficient” and the implied estimate from (BPI—Y)-(PI—B)
in column “Total.” Differences are generally small and statistically insignificant, broadly
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supporting the validity of extra orthogonality condition in (BPI—Y). The difference for
school closures as well as the sum of all policies in Table 6 is significantly different from
zero, which may be due to the aforementioned difficulty in identifying the effect of school
closures. There is substantial external epidemiological evidence that suggests that schooling
closures may have substantial effects on the spread of the virus: studies like Jones et al.
(2020) and Davies et al. (2020) establish that children carry substantial amounts of viral
loads and can contribute to the transmission (due to higher contact rate than other age
groups).2> The US data does not allow us to pint down the effect of closing schools reliably
due to their approximate collinearity with trends in national cases.

Column “Average” of Tables 6 and 7 reports the average of “Total” and “PI—Y Coefli-
cient” columns. The average is an appealing and simple way to combine the two estimates
of the total effect: one relying on the causal structure and another inferred from a direct
estimation of equation (PT — Y).2* We shall be using the average estimate in generating the
counterfactuals in the next section. Turning to the results, the estimates of Tables 6 and
7 imply that all policies combined would reduce Alog AD by 0.97 and 0.40, respectively.
For comparison, the median of Alog AD;; reached its peak in mid-March of about 1.3 (see
Figure 20 in the appendix). Since then it has declined to near 0. Therefore, -0.97 and -0.40
imply that policy changes can account for roughly one-third to two-third of the observed
decrease in death growth. The remainder of the decline is likely due to changes in behavior
from information.

5. EMPIRICAL EVALUATION OF COUNTERFACTUAL POLICIES

We now turn our focus to dynamic feedback effects. Policy and behavior changes that
reduce case and death growth today can lead to a more optimistic, riskier behavior in the
future, attenuating longer run effects. We perform the main counterfactual experiments
using the average of two estimated coefficients as reported in column “Average” of Table
6 under a specification that excludes the number of past national cases and deaths from
information variables. In the appendix, we also report additional counterfactual experiment
results with the specification that includes the national information variables, and find that
they are very similar. The results on mask policies, business closures, stay-at-home orders
are robust with respect to this variation (see Figures 10-13 in the appendix). On the other
hand, the results on removing all policies, particularly closure of schools, reported in the
next section, are sensitive to the inclusion of national information variables, highlighting
the large uncertainty regarding the size of the effect. In Figures 9-13 below, the top panel
presents the result on cases while the bottom panel presents the result on deaths.

23The evidence presented in Jones et al. (2020) has lead German to make the decision to close schools
early.

24Averaging the two estimates theoretically reduces noise, albeit in our case the reductions are small.
Another approach would be to use precision averaging, which would give similar result. Finally, another
approach would be to use generalized method of moments to estimate all of the equations jointly. We don’t
pursue this approach since it is likely to be non-robust under local deviations from correct specification;
simple model averaging is more appealing in this case.
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FiGURE 9. Effect of mandating masks on April 1st in Washington State
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To compute the estimated and counterfactual paths we use the average of two estimated coefficients as
reported in column “Average” of Table 6. We set initial Alog AC and log AC' to their values first observed
in the state we are simulating. We hold all other regressors at their observed values. Error terms are
drawn with replacement from the residuals. We do this many times and report the average over draws of
the residuals. The shaded region is a point-wise 90% confidence interval.

5.1. Business Mask Mandate. We first consider the impact of a nationwide mask man-
date for employees beginning on April 1st. As discussed earlier, we find that mask mandates
reduce case and death growth even when holding behavior constant. In other words, mask
mandates may reduce infections with relatively little economic disruption. This makes mask
mandates a particularly attractive policy instrument. In this section we examine what would
hav¢235happened to the number of cases if all states had imposed a mask mandate on April
1st.

For illustrative purpose, we begin by focusing on Washington State. The left column of
Figure 9 shows the observed, estimated average, and counterfactual average of Alog AC
(top panel) and Alog AD (bottom panel). To compute the estimated and counterfactual
paths, we use the estimate in column “Average” of Table 6. We set initial Alog AC and
log AC' to their values first observed in the state we are simulating. We hold all other
regressors at their observed values. Error terms are drawn with replacement from the
residuals. We do this many times and report the average over draws of the residuals. The

25We feel this is a very plausible counterfactual policy. In a paper made publicly available on April 1st,
Abaluck et al. (2020) argued for mask usage based on comparisons between countries with and without
pre-existing norms of widespread mask usage.
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shaded region is a point-wise 90% confidence interval. The left column shows that the fit
of the estimated and observed growth rate is quite good.

The middle column of Figure 9 shows the change in growth rate from mandating masks on
April 1st. The shaded region is a 90% pointwise confidence interval. As shown, mandating
masks on April 1st lowers the growth of cases or deaths 14 or 21 days later by 0.1 to 0.15.
This effect then gradually declines due to information feedback. Mandatory masks reduce
past cases or deaths, which leads to less cautious behavior, attenuating the impact of the
policy. The reversal of the decrease in growth in late April is due to our comparison of a
mask mandate on April 1st with Washington’s actual mask mandate in early May. By late
April, the counterfactual mask effect has decayed through information feedback, and we are
comparing it the undecayed impact of Washington’s actual, later mask mandate.

The right column of Figure 9 shows how the changes in case and death growth translate
into changes in cases and deaths. The estimates imply that mandating masks on April 1st
would have led to 500 fewer cases and 250 fewer deaths in Washington by the start of June.

The results for other states are similar to those for Washington. In the appendix, Figures
25 and 26 display similar results for Massachusetts and Illinois. Figure 10 shows the average
change in cases and deaths across states, where the top panel shows the effect on cases and
the bottom panel shows the effect on deaths. The point estimates indicate that mandating
masks on April 1st could have led to 25% fewer cumulative cases and 37% fewer cumulative
deaths by the end of May with their 90 percent intervals given by [10,47]% and [18, 55]%,
respectively. The result roughly translates into 18 to 55 thousand saved lives.

5.2. Non-essential Business Closures. A particularly controversial policy is the closure
of non-essential businesses. We now examine a counterfactual where non-essential businesses
are never closed. Figure 11 shows the effect of leaving non-essential businesses open in
Washington. The point estimate implies that the closure of non-essential businesses reduced
cases and deaths by a small amount. However, this estimate is relatively imprecise; 90%
confidence intervals for the change in cases and deaths from leaving non-essential businesses
open by the end of May are [-250,700] and [-100,1200], respectively.

Figure 12 shows the national effect of leaving non essential businesses open on cases and
deaths. For cases, the estimates imply that with non-essential businesses open, cases would
be about -15 to 60% higher in late May. The results for deaths are similar but less precise.

5.3. Stay-at-home orders. We next examine a counterfactual where stay-at-home orders
had been never issued. Figure 13 shows the average effect of no stay-at-home orders. On
average, without stay-at-home orders, case growth rate would have been nearly 0.1 higher
in late April. This translates to 80% [25%,170%] more cases by the start of June. The
results for deaths are similar, but slightly less precise, with no increase included in a 90
percent confidence interval.
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F1GURE 10. Effect of nationally mandating masks for employees on April
1st in the US
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In the left column, the dots are the average change in growth in each state. The blue line is the average
across states of the change in growth. The shaded region is a point-wise 90% confidence interval. The right
column shows the change in cases or deaths relative to the baseline of actual policies.
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FIGURE 11. Effect of leaving non-essential businesses open in Washington
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FiGURE 12. Effect of leaving non-essential businesses open in the US
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FiGure 13. Effect of having no stay-at-home orders in the US
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6. COUNTERFACTUAL EFFECT OF REMOVING ALL POLICIES AND ITS SENSITIVITY

We now consider the impact of changing from the observed policies to none. Figure 15
shows the average across states of the change in case growth and relative increase in cases
under a specification without past national case variables. Removing policies leads to an
increase of above 0.2 in case growth throughout April and May. The confidence interval
is fairly wide, and its upper bound includes a very large increase in cases by the end of
May. The right panel displays the national increase in aggregate cases without any policy
intervention. The estimates imply at least a 7 fold increase in cases with a large upper
bound by the end of May, or at least 14 million additional cases. The estimated impact on
deaths is larger than cases, and even more imprecise.

The effect of removing all policies includes the effect of school closures. The visual
evidence on growth rates for states with and without school closures, presented blow, suggest
that there may be a potentially large effect, though the history is very short. The main
results presented in Section 3 also support the hypothesis that the school closures were
important at lowering the growth rates. This evidence is consistent with the emerging
evidence of prevalence of Covid-19 among children aged 10-17. Davies et al. (2020) find
that although children’s transmission and susceptibility rates are half that of ages 20-30,
children’s contact rates are much higher. This type of evidence, as well as, evidence that
children carry viral loads similar to older people (Jones et al. (2020)), led Germany to make
the early decision of closing schools.

As discussed above, there is little variation across states in the timing of school closures.
Consequently, the effect of school closures is difficult to identify statistically, because it is
hard to separate it from aggregate time effect, and its estimate is sensitive to an inclusion of

FIGURE 14. Case and death growth conditional on policies
AlogAC; given closed K-12 schools AlogAD;; given closed K-12 schools

AlOgA Dit

Apr May Jun Apr May Jun

In these figures, red points are the case or death growth rate in states without each policy 14 (or 21 for
deaths) days earlier. Blue points are states with each policy 14 (or 21 for deaths) days earlier. The red line
is the average across states without each policy. The blue line is the average across states with each policy.
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some aggregate variables such as national cases. To support this point, Figure 16 shows the
effect of removing all policies on cases based on the estimates with national cases included as
information. When national case variables are included in the specification, the estimated
effect of school closures, and hence that of removing all policies, is much smaller with a 90%
confidence interval of [0,10] fold increases.

Given this sensitivity, we conclude that there still exists a lot of uncertainty as to the
effect of removing all policies, especially schooling. The impact of not implementing any
policies on cases and deaths can be quite large, but the effect of school closures, hence
that of removing all policies, is not well identified statistically from the US state-level data
alone, because of the lack of cross-sectional variations. Any analyses of re-opening plans
need to be aware of this uncertainty. An important research question is how to resolve this
uncertainty using additional data sources.

FIGURE 15. Effect of removing policies on cases in the US under a specifi-

cation with only state-level cases/deaths as information
Effect of removing policies on case growth Relative effect of removing policies
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FIGURE 16. Effect of removing policies on cases in the US under a specifi-
cation with both state-level cases/deaths and national-level cases/deaths as
information
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7. CONCLUSION

This paper assesses the effects of policies on the spread of Covid-19 in the US using state-
level data on cases, tests, policies, and social distancing behavior measures from Google
Mobility Reports. Our findings are summarized as follows.

First, our empirical analysis indicates that mandating face masks has reduced the spread
of Covid-19 without affecting people’s social distancing behavior measured by Google Mo-
bility Reports. Our counterfactual experiment based on the estimated model suggests that
if all states had have adopted mandatory face mask policies on April 1st of 2020, then the
number of deaths by the end of May would have been smaller by as much as 17 to 55%,
which roughly translates to 17 to 55 thousand saved lives.

Second, we find that keeping non-essential businesses open would have led to -20 to 60%
more cases while not implementing stay-at-home orders would have increased cases by 25
to 170 % by the start of June.

Third, we find considerable uncertainty over the impact of all policies combined on case
or death growth because it is difficult to identify the effect of school closures from the US
state-level data due to the lack of variation in the timing of school closures across states.

Fourth, our analysis shows that people voluntarily reduce their visits to workplace, retails,
grocery stores, and limit their use of public transit when they receive information on a
higher number of new cases and deaths. This suggests that individuals make decisions to
voluntarily limit their contact with others in response to greater transmission risks, leading
to an important feedback mechanism that affects future cases and deaths. Model simulations
that ignore this voluntary behavioral response to information on transmission risks would
over-predict the future number of cases and deaths.

Beyond these findings, our paper presents a useful conceptual framework to investigate
the relative roles of policies and information on determining the spread of Covid-19 through
their impact on people’s behavior. Our causal model allows us to explicitly define coun-
terfactual scenarios to properly evaluate the effect of alternative policies on the spread of
Covid-19. More broadly, our causal framework can be useful for quantitatively analyzing
not only health outcomes but also various economic outcomes (Bartik et al., 2020; Chetty
et al., 2020).
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APPENDIX A. DATA CONSTRUCTION

A.1. Measuring AC and Alog AC. We have three data sets with information on daily
cumulative confirmed cases in each state. As shown in Table 8, these cumulative case
numbers are very highly correlated. However, Table 9 shows that the numbers are different
more often than not.

NYT JHU CTP
NYT 1.00000 0.99995 0.99991
JHU 0.99995 1.00000 0.99987
CTP 0.99991 0.99987 1.00000

TABLE 8. Correlation of cumulative cases

1 2 3
NYT 1.00 0.28 0.37
JHU 0.28 1.00 0.33
CTP 0.37 0.33 1.00

TABLE 9. Portion of cumulative cases that are equal between data sets

Figure 17 shows the evolution of new cases in each of these three datasets. In all cases,
daily changes in cumulative cases displays some excessive volatility. This is likely due to
delays and bunching in testing and reporting of results. Table 10 shows the variance of
log new cases in each data set, as well as their correlations. As shown, the correlations
are approximately 0.9. The NYT new case numbers have the lowest variance.?6 In our
subsequent results, we will primarily use the case numbers from The New York Times.

NYT JHU CTP
NYT 1.00 0.88 0.87
JHU 0.88 1.00 0.80
CTP 0.87 0.80 1.00
Variance 5.63 7.02 6.64
TABLE 10. Correlation and variance of log daily new cases

For most of our results, we focus on new cases in a week instead of in a day. We do this
for two reasons as discussed in the main text. First, a decline of new cases over two weeks
has become a key metric for decision makers. Secondly, aggregating to weekly new cases
smooths out the noise associated with the timing of reporting and testing.

Table 11 reports the correlation and variance of weekly log new cases across the three
data sets. Figure 18 shows the evolution of weekly new cases in each state over time.

26This comparison is somewhat sensitive to how you handle negative and zero cases when taking logs.

Here, we replaced log(0) with —1. In our main results, we work with weekly new cases, which are very rarely
ZE€ro.
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FIGURE 17. Daily cases

JHU

New cases

Jul

New cases

Each line shows daily new cases in a state.

NYT JHU CTP

NYT 1.00 0.99 0.99
JHU 099 1.00 0.99
CTP 0.99 0.99 1.00
Variance 4.15 4.33 4.20

TABLE 11. Correlation and variance of log weekly new cases

A.2. Deaths. Table 12 reports the correlation and variance of weekly deaths in the three
data sets. Figure 19 shows the evolution of weekly deaths in each state. As with cases, we
use death data from The New York Times in our main results.

NYT JHU CTP
NYT 1.00 0.99 0.99
JHU 0.99 1.00 0.98
CTP 0.99 0.98 1.00

Variance 293262.32 288818.77 204037.51
TABLE 12. Correlation and variance of weekly deaths

A.3. Tests. Our test data comes from The Covid Tracking Project. Figure 21 shows the
evolution of tests over time.
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FIGURE 18. Weekly Cases
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Each line shows weekly new cases in a state.
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FIGURE 19. Weekly Deaths
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FiGure 20. Case and death growth
Evolution of AlogAC;;

Mar Apr May Jun
date

Evolution of AlogAD;;

5.0

25

0.0

Mar Apr May Jun
date

Thin gray lines are case or death growth in each state and date. Thicker colored lines are quantiles of case
or death growth conditional on date.
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FIGURE 21. Number of Tests

Total Cumulative Tests
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1e+05

1e+01
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date

These figures use the “total test results” reported by The Covid Tracking Project. This is meant to reflect
the number of people tested (as opposed to the number of specimens tested).
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A.4. Social Distancing Measures. In measuring social distancing, we focus on Google
Mobility Reports. This data has international coverage and is publicly available. Figure
22 shows the evolution of the four Google Mobility Reports variables that we use in our
analysis.

FIGURE 22. Evolution of Google Mobility Reports

Evolution of workplaces intensity Evolution of retail intensity

Percent Change
Percent Change

cent Change
Percent Change

This figure shows the evolution of Google Mobility Reports over time. Thin gray lines are the value of the
variables in each state and date. Thicker colored lines are quantiles of the variables conditional on date.

A.5. Policy Variables. We use the database on US state policies created by Raifman
et al. (2020). As discussed in the main text, our analysis focuses on seven policies. For
stay-at-home orders, closed nonessential businesses, closed K-12 schools, closed restaurants
except takeout, and closed movie theaters, we double-checked any state for which Raifman
et al. (2020) does not record a date. We filled in a few missing dates. Our modified data is
available here. Our modifications fill in 1 value for school closures, 2 for stay-at-home orders,
3 for movie theater closure, and 4 for non-essential business closures. Table 13 displays all 25
dated policy variables in Raifman et al. (2020)’s database with our modifications described
above.

A.6. Timing. There is a delay between infection and when a person is tested and appears
in our case data. MIDAS (2020) maintain a list of estimates of the duration of various
stages of Covid-19 infections. The incubation period, the time from infection to symptom
onset, is widely believed to be 5 days. For example, using data from Wuhan, Li et al. (2020)
estimate a mean incubation period of 5.2 days. Siordia (2020) reviews the literature and
concludes the mean incubation period is 3-9 days.
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FIGURE 23. Case and death growth conditional on policies
AlogAC;; given masks for employees AlogAD; given masks for employees
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In these figures, red points are the case or death growth rate in states without each policy 14 (or 21 for
deaths) days earlier. Blue points are states with each policy 14 (or 21 for deaths) days earlier. The red line
is the average across states without each policy. The blue line is the average across states with each policy.
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FIGURE 24. Case and death growth conditional on policies
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In these figures, red points are the case or death growth rate in states without each policy 14 (or 21 for
deaths) days earlier. Blue points are states with each policyl4 (or 21 for deaths) days earlier. The red line
is the average across states without each policy. The blue line is the average across states with each policy.
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Estimates of the time between symptom onset and case reporting or death are less com-
mon. Using Italian data, Cereda et al. (2020) estimate an average of 7.3 days between
symptom onset and reporting. Zhang et al. (2020a) find an average of 7.4 days using Chi-
nese data from December to early February, but they find this period declined from 8.9
days in January to 5.4 days in the first week of February. Both of these papers on time
from symptom onset to reporting have large confidence intervals covering approximately 1
to 20 days.

Studying publicly available data on infected persons diagnosed outside of Wuhan, Linton
et al. (2020) estimate an average of 15 days from onset to death. Similarly, using publicly
available reports of 140 confirmed Covid-19 cases in China, mostly outside Hubei Province,
Sanche et al. (2020) estimate the time from onset to death to be 16.1 days.

Based on the above, we expect a delay of roughly two weeks between changes in behavior
or policies, and changes in reported cases while a corresponding delay of roughly three weeks
for deaths.

A.7. Counterfactuals for Massachusetts and Illinois. Figures 25 and 26 present the
fit of estimated cases as well as the counterfactual effect of mandating masks on April 1st
in Massachusetts and Illinois, respectively. Figures 27 and 28 show the counterfactual effect
of leaving non-essential business open in Massachusetts and Illinois, respectively.
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Ficure 25. Effect of mandating masks on April 1st in Massachusetts
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To compute the estimated and counterfactual paths we use the average of two estimated coefficients as
reported in column “Average” of Table 7. We set initial Alog AC and log AC' to their values first observed
in the state we are simulating. We hold all other regressors at their observed values. Error terms are
drawn with replacement from the residuals. We do this many times and report the average over draws of
the residuals. The shaded region is a point-wise 90% confidence interval.
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FiGUuRE 26. Effect of mandating masks on April 1st in Illinois
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To compute the estimated and counterfactual paths we use the average of two estimated coefficients as
reported in column “Average” of Table 7. We set initial Alog AC and log AC' to their values first observed
in the state we are simulating. We hold all other regressors at their observed values. Error terms are
drawn with replacement from the residuals. We do this many times and report the average over draws of
the residuals. The shaded region is a point-wise 90% confidence interval.
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FIGURE 27. Effect of leaving businesses open in Massachusetts
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FiGure 28. Effect of leaving businesses open in Illinois
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A.8. Counterfactuals with National Cases as Information Variables. Figures 29-31
present the results of counterfactual analyses that include the national cases/deaths as the
information variables. To create this figure, we repeat the same counterfactual simulation
that we did for Washington with each state. For each state, we hold national cases constant,
but endogenize state specific information. Thus, these figures should be interpreted as an
average of state specific counterfactuals, and not a national counterfactual.

The counterfactual results of mask policies, shelter-in-place, and closing non-essential
businesses remain robust with respect to the inclusion of national case/death variables.
This contrasts to the resulting counterfactual of removing all policies discussed in section

6.
Ficure 29. Effect of mandating masks for employees on April 1st un-
der a specification with both state-level cases/deaths and national-level
cases/deaths as information
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Ficure 30. Effect of leaving non-essential businesses open under a specifi-
cation with both state-level cases/deaths and national-level cases/deaths as

information
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FIGURE 31. Effect of having no stay-at-home orders under a specification
with both state-level cases/deaths and national-level cases/deaths as infor-

mation
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